Bài 2: cho tam giác ABC vuông tại A.Có AH là đường cao.Tính BH,biết AH=2cm;BC=5cm.
Bài 3:Cho tam giác ABC vuông tại A.Có AH là đường cao từ H kẻ HM,HN vuông góc với AB,AC. CM : AM.AB=AN.AC Giúp mik với ạ chiều cần gấp lắm(chi tiết giúp mik a)
bài 1:cho 1 tam giác vuông abc có a bằng 90 độ biết ab/ac bằng 5/6, ab=75cm, vẽ đường cao ah của tam giác abc sao cho ab =30cm tính bh,ch,bc
bài 2 cho tam giác abc vông góc tại a đường cao ah (thuộc bc) , bh>bc biết ah =2cm ,bc=25cm . tính ab, ac,bh,ch giúp mình với ạ
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
Dễ quá đi
cho tam giác ABC vuông tại A kẻ đường cao AH biết BH=2cm,HC=3cm tính AH
Tam giác ABC vuông tại A có đường cao AH. Áp dụng hệ thức lượng
\(\Rightarrow AH^2=BH.CH=2.3=6\)
\(\Rightarrow AH=\sqrt{6}\left(cm\right)\)
Áp dụng hệ thức lượng vào tam giác vuông \(ABC \) ta có :
\(AH^2=CH.BH=3.2=6\)
\(\Rightarrow AH=\sqrt{AH^2}=\sqrt{6}\) \(\left(cm\right)\)
Tam giác ABC vuông tại A có đường cao AH.áp dụng định lý py -ta -go ta có:
⇒AH2=BH.CH
=2.3=6
⇒AH2=BH.CH
=2.3
=6
⇒AH=√6(cm)
Cho Tam giác ABC vuông tại A biết AB=2cm AC=5cm đường cao AH tính BH HC AH
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{29}\left(cm\right)\)
Hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{4\sqrt{29}}{29}\)
\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{25\sqrt{29}}{29}\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{10\sqrt{29}}{29}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=2^2+5^2=29\)
\(\Leftrightarrow BC=\sqrt{29}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{4}{\sqrt{29}}=\dfrac{4\sqrt{29}}{29}\left(cm\right)\\CH=\dfrac{25}{\sqrt{29}}=\dfrac{25\sqrt{29}}{29}\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{2\cdot5}{\sqrt{29}}=\dfrac{10\sqrt{29}}{29}\left(cm\right)\)
cho tam giác ABC vuông tại A đường cao AH . biết BH = 2cm, HC.BC = 15cm . tính AH, AB, AC
Ta có: \(HC\cdot BC=15\)
nên \(HC=\dfrac{15}{BC}\)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên \(BC=2+\dfrac{15}{BC}\)
\(\Leftrightarrow BC^2=2BC+15\)
\(\Leftrightarrow BC^2-2BC-15=0\)
\(\Leftrightarrow\left(BC-5\right)\left(BC+3\right)=0\)
\(\Leftrightarrow BC=5\left(cm\right)\)
\(\Leftrightarrow CH=5-2=3\left(cm\right)\)
\(\Leftrightarrow AH=\sqrt{HB\cdot HC}=\sqrt{6}\left(cm\right)\)
\(\Leftrightarrow AB=\sqrt{BH\cdot BC}=\sqrt{2\cdot5}=\sqrt{10}\left(cm\right)\)
\(\Leftrightarrow AC=\sqrt{CH\cdot BC}=\sqrt{15}\left(cm\right)\)
cho tam giác abc vuông tại a đường cao ah biết ah=2cm, bc=5cm. tính bh, ch, ab, ac
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>HB*HC=4
BH+CH=5
=>BH=5-CH
HB*HC=4
=>HC(5-CH)=4
=>5HC-HC^2-4=0
=>HC^2-5HC+4=0
=>HC=1cm hoặc HC=4cm
TH1: HC=1cm
=>HB=4cm
\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)
TH2: HC=4cm
=>HB=1cm
\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
cho tam giác ABC vuông tại A đường cao AH , biết AH= 3cm ,BH= 2cm. Tính các dộ dài còn lại
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago tam giác AHB vuông tại H
\(AB^2=AH^2+BH^2=9+4=13\Rightarrow AB=\sqrt{13}\)cm
* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{9}{2}\)cm
\(\Rightarrow BC=BH+HC=2+\dfrac{9}{2}=\dfrac{13}{2}\)cm
* Áp dụng hệ thức : \(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{9}{\sqrt{13}}=\dfrac{9\sqrt{13}}{13}\)cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{3^2}{2}=\dfrac{9}{2}=4.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=3^2+2^2=13\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=3^2+4.5^2=29.25\)
hay \(AC=\dfrac{3\sqrt{13}}{2}\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=2+4,5=6,5(cm)
hệ thức lượng \(=>AH^2=BH.HC=>HC=\dfrac{AH^2}{BH}=\dfrac{3^2}{2}=4,5cm\)
\(=>BC=BH+HC=2+4,5=6,5cm\)
\(AB^2=BH.BC=>AB=\sqrt{2.6,5}=\sqrt{13}cm\)
\(=>AC^2=CH.BC=>AC=\sqrt{4,5.6,5}=\dfrac{3\sqrt{13}}{2}cm\)
Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
cho tam giác ABC vuông tại A đường cao AH biết BH = 2cm, HC = 6cm a/tính AB, AC và AH b/tính diện tích tam giác AHB