\(\dfrac{x}{\sqrt{x}-1}\)≥0
Giải bpt
(2x+1)^2+(2-x)(2x+1)<=0
giải BPT
giúp e với, e cần luôn ạ!
\(4x^2+4x+1+4x+2-2x^2-x\le0\)
\(\Leftrightarrow2x^2+7x+3\le0\Leftrightarrow\left(2x+1\right)\left(x+3\right)\le0\)
TH1 : \(\left\{{}\begin{matrix}2x+1\ge0\\x+3\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-3\end{matrix}\right.\)<=> -1/2 =< x =< -3
TH2 : \(\left\{{}\begin{matrix}2x+1\le0\\x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge-3\end{matrix}\right.\)( vô lí )
Giải bpt
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{3x^2+5}}\le\dfrac{2}{\sqrt{x^2-2}+1}\)
ĐKXĐ: \(x^2\ge2\)
Đặt \(\sqrt{x^2-2}=a\ge0\)
BPT tương đương: \(\dfrac{1}{\sqrt{a^2+3}}+\dfrac{1}{\sqrt{3a^2+11}}\le\dfrac{2}{a+1}\)
Ta có: \(VT^2\le2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+11}\right)< 2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+1}\right)=\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\)
Mặt khác ta có: \(\left(a-1\right)^4\ge0\Leftrightarrow a^4-4a^3+6a^2-4a+1\ge0\)
\(\Leftrightarrow3a^4+10a^2+3\ge2a^4+4a^3+4a^2+4a+2\)
\(\Leftrightarrow\left(3a^2+1\right)\left(a^2+3\right)\ge2\left(a^2+1\right)\left(a+1\right)^2\)
\(\Rightarrow\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\le\dfrac{4}{\left(a+1\right)^2}\)
\(\Rightarrow VT^2< \dfrac{4}{\left(a+1\right)^2}\Rightarrow VT< \dfrac{2}{a+1}\)
\(\Rightarrow\) BPT đã cho đúng với mọi \(a\ge0\) hay nghiệm của BPT là \(x^2\ge2\)
Giải bpt
\(\sqrt{\dfrac{x^4+x^2+1}{x\left(x^2+1\right)}}\ge\sqrt{\dfrac{x^2+x+1}{x^2+1}}+2-\dfrac{x^2+1}{x}\)
ĐKXĐ: \(x>0\)
\(\Leftrightarrow\sqrt{\dfrac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{x\left(x^2+1\right)}}-\sqrt{\dfrac{x^2+x+1}{x^2+1}}+\dfrac{\left(x-1\right)^2}{x}\ge0\)
\(\Leftrightarrow\sqrt{\dfrac{x^2+x+1}{x^2+1}}\left(\sqrt{\dfrac{x^2-x+1}{x}}-1\right)+\dfrac{\left(x-1\right)^2}{x}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{\sqrt{x^2-x+1}+\sqrt{x}}.\sqrt{\dfrac{x^2+x+1}{x^2+1}}+\dfrac{\left(x-1\right)^2}{x}\ge0\) (luôn đúng \(\forall x>0\))
Vậy nghiệm của BPT đã cho là \(x>0\)
\(\dfrac{x-\sqrt{x}}{1-\sqrt{2x^{2^{ }}-2x+2}}\) ≥ 1 ,x ∈ R
giải bpt
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
`sqrt{x-2}-2>=sqrt{2x-5}-sqrt{x+1}`
`đk:x>=5/2`
`bpt<=>\sqrt{x-2}+\sqrt{x+1}>=\sqrt{2x-5}+2`
`<=>x-2+x+1+2\sqrt{(x-2)(x+1)}>=2x-5+4+4\sqrt{2x-5}`
`<=>2x-1+2\sqrt{(x-2)(x+1)}>=2x-1+4\sqrt{2x-5}`
`<=>2\sqrt{(x-2)(x+1)}>=4\sqrt{2x-5}`
`<=>sqrt{x^2-x-2}>=2sqrt{2x-5}`
`<=>x^2-x-2>=4(2x-5)`
`<=>x^2-x-2>=8x-20`
`<=>x^2-9x+18>=0`
`<=>(x-3)(x-6)>=0`
`<=>` \(\left[ \begin{array}{l}x \ge 6\\x \le 3\end{array} \right.\)
Kết hợp đkxđ:
`=>` \(\left[ \begin{array}{l}x \ge 6\\\dfrac52 \le x \le 3\end{array} \right.\)
1. Biết rằng tập nghiệm của bpt \(\sqrt{2x-4}-2\sqrt{2-x}\ge\dfrac{6x-4}{5\sqrt{x^2+1}}\) là \(\left[a;b\right]\) . Tính P=3a-2b
2. Tính tổng các giá trị nguyên dương của m để tập nghiệm của bpt \(\sqrt{\dfrac{m}{72}x^2+1}< \sqrt{x}\) có chứa đúng 2 số nguyên
1.
ĐKXĐ: \(x=2\)
Xét \(x=2\), bất phương trình vô nghiệm
\(\Rightarrow\) bất phương trình đã cho vô nghiệm
\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn
Đề bài lỗi chăng.
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)
Giải BPT: \(\sqrt{x^4+x^2+1}+\sqrt{x.\left(x^2-x+1\right)}\le\sqrt{\dfrac{\left(x^2+1\right)^3}{x}}\)