Cho biểu thức B=(x+căn x/ 1+ căn x +1)(x-căn x/ 1-căn x -1): căn x-1/căn x+1 Rút gọn voiqs x>=0;x khác 1 Mn giải hộ ạ
cho biểu thức A = (2 căn x +x chia x căn x -1 -1 chia căn x - 1 ) chia ( căn x + 2 chia x + căn x +1 )
a) tìm điều kiện xác định của biểu thức A
b) rút gọn biểu thức A
c) tính giá trị A khi x = 9-4 căn 5
d) tìm giá trị lớn nhất của A
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
cho biểu thức m = x bình phương trừ căn x trên x cộng căn x cộng 1 trừ x bình cộng căn x trên x trừ căn x cộng 1 cộng x cộng 1. Rút gọn biều thức m với x lớn hơn hoặc bằng 0
Rút gọn biểu thức sau:
P= x^2+căn x/x-căn x+1 - 2(x+căn x)/căn x + 2(x-1)/căn x-1
Mình đang cần gấp ạ
Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2\left(x+\sqrt{x}\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x+\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x+\sqrt{x}\)
Rút gọn biểu thức
a) căn (x+(2 căn x-1) )
b) căn (x-1- (2 căn x-2) )
c) căn (x-2+ (2 căn x-3))
d) căn (2x -( 2 căn x^2-4)) +căn (x-2)
Rút gọn biểu thức P P= 1/ căn x+ căn x/ căn x+1÷ 1/căn x+1 - tìm giá trị nhỏ nhất của P
Rút gọn biểu thức
A= căn x+1 B=4 căn x/x+4 A=x-căn x+1
A=3 /2 căn x A=3/căn x+3
A=1-căn x A=x-2 căn x-1
\(A=\sqrt{x}+1\) (đã thu gọn)
\(B=\dfrac{4\sqrt{x}}{x+4}\) (đã thu gọn)
\(A=x-\sqrt{x}+1=\sqrt{x}\cdot\sqrt{x}-\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)+1\)
\(A=\dfrac{3}{2\sqrt{x}}\) (đã thu gọn)
\(A=\dfrac{3}{\sqrt{x}+3}\) (đã thu gọn)
\(A=1-\sqrt{x}\) (đã thu gọn)
\(A=x-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}-2\right)-1\)
cho bieu thức A=[( căn x +1 / x-1)+(1/ căn x +1)]: căn x/căn x +1
a) tìm đkxd
b) rút gọn A
c tìm x để A< căn A
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2}{\sqrt{x}-1}\)
rút gọn biểu thức : A= 3.căn x -2 /1- căn x - 2. căn x +3/căn x + 3 + 15. căn x -11/x+ 2.căn x -3