Những câu hỏi liên quan
H24
Xem chi tiết
AH
31 tháng 7 2023 lúc 20:10

Lời giải:

a. 

\(A=\frac{3}{2}-2(\frac{\cos x}{\sin x})^2=\frac{3}{2}-2.(\frac{1}{\tan x})^2=\frac{3}{2}-\frac{1}{2}(\frac{-3}{2})^2=-3\)

b.

\(A=\frac{1}{2}(\frac{\sin x}{\cos x})^2-\frac{5}{2}=2(\frac{1}{\cot x})^2-\frac{5}{2}=2(\frac{5}{3})^2-\frac{5}{2}=\frac{55}{18}\)

Bình luận (0)
HM
31 tháng 7 2023 lúc 20:19

a, \(A=\dfrac{3sin^2\left(x\right)-cos^2\left(x\right)}{2sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\dfrac{cos^2\left(x\right)}{sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\dfrac{1}{tan^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=-3\)

b, \(A=\dfrac{sin^2\left(x\right)-5cos^2\left(x\right)}{2cos^2\left(x\right)}=\dfrac{1}{2}\dfrac{sin^2\left(x\right)}{cos^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\dfrac{1}{cot^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\left(\dfrac{5}{3}\right)^2-\dfrac{5}{2}=\dfrac{55}{18}\)

Bình luận (0)
TT
Xem chi tiết
H24
30 tháng 4 2022 lúc 18:27

`cot  x = -3 => cos x = -3 sin x`

`=> A = [ 2 sin^2 x + 3 sin x . (-3 sin x ) ] / [ sin^2 x - 7 ( sin^2 x + cos^2 x ) ]`

`<=>A = [ -7 sin^2 x ] / [ sin^2 x - 7 ( sin^2 x + 9 sin^2 x ) ]`

`<=>A = [ -7 sin^2 x ] / [ -69 sin^2 x ]`

`<=> A = 7 / 69`

Bình luận (0)
H24
Xem chi tiết
NL
3 tháng 3 2019 lúc 5:19

Giả sử các biểu thức đều có nghĩa

\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)

\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)

\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)

\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)

b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)

\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)

c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)

\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)

Bình luận (0)
H24
Xem chi tiết
NT
31 tháng 7 2023 lúc 20:18

a: tan x=căn 3

=>sin x/cosx=căn 3

=>sin x=cosx*căn 3

\(A=\dfrac{\left(cosx\cdot\sqrt{3}\right)^2}{\left(cosx\cdot\sqrt{3}\right)^2-cos^2x}=\dfrac{3}{3-1}=\dfrac{3}{2}\)

b: cot x=-căn 3

=>cosx=-sinx*căn 3

\(A=\dfrac{sinx+4\cdot sinx\cdot\sqrt{3}}{2\cdot sinx+sinx\cdot\sqrt{3}}=\dfrac{1+4\sqrt{3}}{2+\sqrt{3}}=\left(4\sqrt{3}+1\right)\left(2-\sqrt{3}\right)\)

=8căn 3-12+2-căn 3

=7căn 3-10

Bình luận (0)
AH
31 tháng 7 2023 lúc 20:49

Lời giải:

\(A=\frac{1}{\frac{\sin ^2x-\cos ^2x}{\sin ^2x}}=\frac{1}{1-(\frac{\cos x}{\sin x})^2}=\frac{1}{1-(\frac{1}{\tan x})^2}=\frac{1}{1-(\frac{1}{\sqrt{3}})^2}=\frac{3}{2}\)

\(A=\frac{\sin x-4\cos x}{2\sin x-\cos x}=\frac{1-4.\frac{\cos x}{\sin x}}{2-\frac{\cos x}{\sin x}}=\frac{1-4\cot x}{2-\cot x}=\frac{1-4.(-\sqrt{3})}{2-(-\sqrt{3})}=-10+7\sqrt{3}\)

Bình luận (0)
H24
Xem chi tiết
NT
31 tháng 7 2023 lúc 20:23

tan x=1

=>sin x=cosx

\(A=\dfrac{3sin^2x-sin^2x}{2sin^2x}=\dfrac{3-1}{2}=1\)

Bình luận (0)
KN
Xem chi tiết
RH
14 tháng 9 2021 lúc 22:17

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

Bình luận (0)
RH
14 tháng 9 2021 lúc 22:24

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

Bình luận (0)
RH
14 tháng 9 2021 lúc 22:28

c) ĐKXĐ: x # kpi

Pt <=> tanx + 1/tanx + 2 = 0

--> tanx = -1

--> x = -pi/4 + kpi (k nguyên)

Bình luận (0)
JE
Xem chi tiết
NL
25 tháng 7 2020 lúc 15:36

a/

DKXD: ...

\(\Leftrightarrow-cos2x.tan^22x+3.cos2x=0\)

\(\Leftrightarrow cos2x\left(3-tan^22x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\tan^22x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\2x=\frac{\pi}{3}+k\pi\\2x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{6}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 15:42

b/

DKXD: ...

\(\Leftrightarrow\frac{sinx}{cosx}+\frac{sin2x}{cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sinx.cos2x+sin2x.cosx}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sin\left(2x+x\right)}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}-\frac{2sin3x}{sin2x}=0\)

\(\Leftrightarrow sin3x\left(\frac{1}{cosx.cos2x}-\frac{2}{sin2x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\left(1\right)\\2cosx.cos2x=sin2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow3sinx-4sin^3x=0\) (tìm nghiệm thẳng bằng \(3x=k\pi\) rồi dựa vào đường tròn lượng giác loại nghiệm cũng được)

\(\Leftrightarrow sinx\left(3-4sin^2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(l\right)\\sinx=\pm\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow2cosx.cos2x=2sinx.cosx\)

\(\Leftrightarrow2cosx\left(cos2x-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(l\right)\\cos2x=sinx=cos\left(\frac{\pi}{2}-x\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\left(l\right)\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 15:44

c/

\(\Leftrightarrow sinx.cos2x-sinx+1-cos2x=0\)

\(\Leftrightarrow sinx\left(cos2x-1\right)-\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\cos2x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\2x=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=k\pi\end{matrix}\right.\)

Bình luận (0)
TL
Xem chi tiết
NL
5 tháng 1 2021 lúc 21:24

\(a=\int\dfrac{1}{2tan^2x+5tanx+2}.\dfrac{dx}{cos^2x}\)

Đặt \(tanx=t\Rightarrow dt=\dfrac{dx}{cos^2x}\)

\(I=\int\dfrac{dt}{2t^2+5t+2}=\int\dfrac{dt}{\left(t+2\right)\left(2t+1\right)}=\dfrac{2}{3}\int\left(\dfrac{1}{2t+1}-\dfrac{1}{2t+4}\right)dt\)

\(=\dfrac{1}{3}ln\left|\dfrac{2t+1}{2t+4}\right|+C=\dfrac{1}{3}ln\left|\dfrac{2tanx+1}{2tanx+4}\right|+C\)

Câu b hoàn toàn tương tự

Bình luận (1)
TH
Xem chi tiết
NL
28 tháng 11 2019 lúc 0:08

\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x-2.tanx.cotx+cot^2x=9\)

\(\Rightarrow tan^2x+cot^2x=11\)

\(\left(tanx+cotx\right)^2=tan^2x+cot^2x+2.tanx.cotx=11+2=13\)

\(\Rightarrow tanx+cotx=\pm\sqrt{13}\)

\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)

\(=11\left(tanx+cotx\right)\left(tanx-cotx\right)=\pm33\sqrt{13}\)

Bình luận (0)
 Khách vãng lai đã xóa