Cho hàm số (P):y=-1/2x^2 a)vẽ (P) b) viết pt đường thẳng (d1)//(d):y=2x+1 và tiếp xúc với(p)
Câu 1. Cho hàm số y=1/2x bình phương có đồ thị (P)
a, Viết phương trình đường thẳng (d1) // với đường thẳng (d): y= x+1 và tiếp xúc với (P)
Giúp mình với
Vì (d1)//(d) => (d1):y=x+b (\(b\ne1\))
Xét pt hoành độ gđ của (d1) và (P):
\(\dfrac{1}{2}x^2=x+b\)
\(\Leftrightarrow x^2-2x-2b=0\) (1)
Để (d1) và (P) tiếp xúc với nhau <=>Pt (1) có nghiệm kép <=> \(\Delta=0\)\(\Leftrightarrow4-4\left(-2b\right)=0\Leftrightarrow b=-\dfrac{1}{2}\) (thỏa)
Vậy (d1): \(y=x-\dfrac{1}{2}\)
Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) \(x^2+y^2-2x-4=0\) và đường thẳng (d): \(x-y+1=0\)
1) Viết pt đường thẳng (d1) vuông góc với (d) và tiếp xúc với (C)
2) Viết pt đương thẳng (Δ) song song với (d) và cắt (C) tại 2 điểm M, N có MN = 2
3) Tìm trên (d) điểm P biết rằng qua P kẻ được 2 tiếp tuyến PA, PB đến (C) có ΔPAB là tam giác đều. (trong đó A, B là 2 tiếp điểm)
1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)
3.
Vì \(P\in d\Rightarrow P=\left(m;m+1\right)\left(m\in R\right)\)
\(\Rightarrow IP=\sqrt{\left(m-1\right)^2+\left(m+1\right)^2}=\sqrt{2m^2+2}\)
Ta có: \(cosAIP=cos60^o=\dfrac{R}{IP}=\dfrac{\sqrt{5}}{IP}=\dfrac{1}{2}\Rightarrow IP=2\sqrt{5}\)
\(\Rightarrow\sqrt{2m^2+2}=2\sqrt{5}\)
\(\Leftrightarrow2m^2+2=20\)
\(\Leftrightarrow m=\pm3\)
\(\Rightarrow\left[{}\begin{matrix}P=\left(3;4\right)\\P=\left(-3;-2\right)\end{matrix}\right.\)
Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.Cho (P): y = 2x².
a) Vẽ (P).
b) Tùy theo m, hãy xét số giao điểm của đường thẳng y = mx – 1 với (P).
c) Lập PT đt song song với đt: y = 2x + 2010 và tiếp xúc với (P).
d) Tìm trên (P) điểm cách đều 2 trục tọa độ.
1) Viết phương trình đường tròn đi qua A(1; 3) và tiếp xúc với 2 đường thẳng 5x+y-3=0 và -2x+7y-1 = 0
2) Viết pt đường tròn tâm thuộc đường thẳng 2x+y-0 và tiếp xúc với (d) x-7y+10=0 tại A(4;3)
1.
Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)
Do đường tròn tiếp xúc với \(d_1;d_2\) nên:
\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)
Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.
2.
Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?
cho hàm số y=x^2 có đồ thị là P . a, vẽ P . b, tìm K để đường thẳng (d) y=2x-K+1 tiếp xúc vớ
b: Phương trình hoành độ giao điểm là:
\(x^2-2x+k-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\left(k-1\right)=-4k+4+4=-4k+8\)
Để (P) tiếp xúc với (d) thì -4k+8=0
hay k=2
a) Xác định hàm số y=ax+b biết rằng đồ thị của hàm số song song với đường thẳng y=2x và đi qua điểm (1;-1).
b) Vẽ đồ thị (d1) của hàm số với a,b vừa tìm được.
c) Tìm tọa độ giao điểm E của đường thẳng (d1) với đường thẳng: y=\(\frac{1}{2}x+1\) (d2)
d) Tính góc tạo bởi đường thẳng (d1) với trục Ox (Làm tròn đến độ)
(Mình Cần Gấp!)
Do (d1) song song với đường thẳng y = 2x nên a = 2
(d1): y = 2x + b
Thay tọa độ điểm (1; -1) vào (d) ta được:
2.1 + b = -1
⇔ b = -1 - 2
⇔ b = -3
Vậy (d1): y = 2x - 3
b) x = 0 ⇒ y = -3
*) Đồ thị:
c) Phương trình hoành độ giao điểm của (d1) và (d2):
2x - 3 = 1/2 x + 1
⇔ 2x - 1/2 x = 1 + 3
⇔ 3/2 x = 4
⇔ x = 4 : 2/3
⇔ x = 8/3
⇒ y = 2.8/3 - 3 = 7/3
Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)
d) Ta có:
Gọi a là góc cần tính
⇒ tan(a) = 2
⇒ a ≈ 63⁰
(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)
a)
Đồ thị hàm số (d1)// đường thẳng `y=2x`
=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)
=> `y=2x+b`
Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:
`-1=2.1+b`
=> `b=-3`
Vậy hàm số `y=ax+b` là `y=2x-3`
c)
Ta có PTHĐGĐ giữa `d_1` và `d_2`:
\(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)
Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)
$HaNa$
Cho hàm số y=-2x+3 có đồ thị là d1 và hàm số y=x+1 có đồ thị là d2
A) Vẽ d1 và d2 trên cùng 1 mp tọa độ
B) viết pt dt d3 đi qua A(-2;1) và song song với d1
Cho các hàm số sau : y = 2x + 1 (D1) và y = x - 3 (D2)
a) Vẽ đồ thị của các hàm số trên cùng một mặt phẳng tọa độ
b) Tìm tọa độ giao điểm d1 và d2 bằng phép toán
c)Viết pt đường thẳng d3, biết d3//d1. Biết điểm A tọa độ (1,.,0) thuộc D3
a:
b: Phương trình hoành độ giao điểm là:
\(2x+1=x-3\)
=>\(2x-x=-3-1\)
=>x=-4
Thay x=-4 vào y=x-3, ta được:
\(y=-4-3=-7\)
Vậy: Tọa độ giao điểm của (D1) và (D2) là B(-4;-7)
c: Đặt phương trình đường thẳng (d3): y=ax+b
Vì (d3)//(d1) nên \(\left\{{}\begin{matrix}a=2\\b< >1\end{matrix}\right.\)
Vậy: y=2x+b
Thay x=1 và y=0 vào y=2x+b, ta được:
\(b+2\cdot1=0\)
=>b+2=0
=>b=-2
Vậy: (d): y=2x-2
Cho hàm số y=2x+2(d1), y=-1/2x - 2(d2)
a) vẽ đồ thị của các hàm số đã cho trên cùng một hệ trục tọa độ Oxy
b)Tìm tọa độ giao điểm A của (d1) và (d2)
c)Viết phương trình đg thẳng(d3), bt (d3) đi qua A và song song với đường thẳng y=2-5x
b: Phương trình hoành độ giao điểm là:
\(2x+2=\dfrac{-1}{2}x-2\)
\(\Leftrightarrow x\cdot\dfrac{5}{2}=-4\)
hay x=-10
Thay x=-10 vào (d1), ta được:
\(y=-20+2=-18\)
\(c,\left(d_3\right)\) đi qua \(A\left(-10;-18\right)\) nên \(x=-10;y=-18\)
\(\left(d_3\right)\) có dạng \(y=ax+b\Leftrightarrow-18=-10a+b\left(1\right)\)
\(\left(d_3\right)//y=-5x+2\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b\ne2\end{matrix}\right.\)
Thay vào \(\left(1\right)\Leftrightarrow-18=-10\left(-5\right)+b\Leftrightarrow b=32\left(tm\right)\)
Vậy \(\left(d_3\right):y=-5x+32\)