tìm tất cả các giá trị của m để hệ phương trình {2x+3y=4 (m+2)x+(m+1)y=3 vô nghiệm
Bài 3: Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)
a) Giải hệ khi m=1
b) Tìm tất cả các giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y=2
a: Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=1\\2x+y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=5\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=x-1=\dfrac{5}{3}-1=\dfrac{2}{3}\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2}\ne-\dfrac{1}{m}\)
=>\(m^2\ne-2\)(luôn đúng)
\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-1\\2x+m\left(mx-1\right)=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-1\\x\left(m^2+2\right)=m+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{m\left(m+4\right)}{m^2+2}-1=\dfrac{m^2+4m-m^2-2}{m^2+2}=\dfrac{4m-2}{m^2+2}\end{matrix}\right.\)
x+y=2
=>\(\dfrac{m+4+4m-2}{m^2+2}=2\)
=>\(2m^2+4=5m+2\)
=>\(2m^2-5m+2=0\)
=>(2m-1)(m-2)=0
=>\(\left[{}\begin{matrix}2m-1=0\\m-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=2\end{matrix}\right.\)
Cho hệ phương trình\(\left\{{}\begin{matrix}\left(m+2\right)x+\left(m+1\right)y=3\\\\x+3y=4\end{matrix}\right.\)
Xác định các giá trị của m để hệ phương trình vô nghiệm
Hệ đã cho vô nghiệm khi
\(m+2=\dfrac{m+1}{3}\ne\dfrac{3}{4}\Leftrightarrow m=-\dfrac{5}{2}\)
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình x - 3 < 0 m - x < 1 vô nghiệm.
A. m < 4
B. m > 4
C. m ≤ 4
D. m ≥ 4
Chọn D
Hệ bất phương trình vô nghiệm khi và chỉ khi m - 1 ≥ 3 hay m ≥ 4
Cho hệ phương trình:
\(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
a) Tìm m để hệ phương trình có nghiệm duy nhất, vô nghiệm, vô số nghiệm
b) Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
1) Tìm tập nghiệm S của bất phương trình | 2x+1| > x+1
2) Tìm tất cả giá trị của tham số m để bất phương trình -x^2+x-m>0 vô nghiệm
2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)
Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)
Cho hệ phương trình x + y = m - 2 x 2 + y 2 + 2 x + 2 y = - m 2 + 4 (trong đó m là tham số). Tìm tất cả các giá trị của m để hệ có nghiệm
Tìm tất cả các giá trị thực của tham số m để phương trình \(\left(m+1\right)^2x+1=\left(7m-5\right)x+m\)vô nghiệm
\(\Leftrightarrow\left(m^2+2m+1\right)x-\left(7m-5\right)x=m-1\)
\(\Leftrightarrow\left(m^2-5m+6\right)x=m-1\)
Pt vô nghiệm khi: \(\left\{{}\begin{matrix}m^2-5m+6=0\\m-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)
Giúp mình các bài sau với:
Bài 1:Cho hệ phương trình\(\left\{{}\begin{matrix}x+y=1\\ax+2y=0\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số a để hệ vô nghiệm.
Bài 2:Cho hệ phương trình\(\left\{{}\begin{matrix}2x-y=m\\mx+\sqrt{2}y=m\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số m để hệ có vô số nghiệm.
Bài 3:Cho hệ phương trình\(\left\{{}\begin{matrix}\text{3x+(m^2+1)y=5m−10}\\−9x+(−3m^2−3)y=−15m+30\end{matrix}\right.\).Chứng minh rằng hệ có vô số nghiệm với mọi giá trị của tham số m.
Giúp mình các bài sau:
Bài 1:Cho hệ phương trình\(\left\{{}\begin{matrix}x+y=1\\ax+2y=0\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số a để hệ vô nghiệm.
Bài 2:Cho hệ phương trình\(\left\{{}\begin{matrix}2x-y=m\\mx+\sqrt{2}y=m\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số m để hệ có vô số nghiệm.
Bài 3:Cho hệ phương trình\(\left\{{}\begin{matrix}3x+\left(m^2+1\right)y=5m-10\\-9x+\left(-3m^2-3\right)y=-15m+30\end{matrix}\right.\).Chứng minh rằng hệ có vô số nghiệm với mọi giá trị của tham số m.