Những câu hỏi liên quan
LL
Xem chi tiết
NT
2 tháng 10 2021 lúc 21:01

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

Bình luận (0)
NL
Xem chi tiết
H24
30 tháng 3 2023 lúc 2:09

loading...

Bình luận (0)
DD
Xem chi tiết
NT
14 tháng 2 2022 lúc 15:49

bạn đăng từng bài nhé

Bình luận (0)
NT
14 tháng 2 2022 lúc 19:43

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

Bình luận (0)
LT
Xem chi tiết
NT
10 tháng 5 2022 lúc 19:22

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

Bình luận (0)
NT
10 tháng 5 2022 lúc 19:26

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 2 2022 lúc 13:47

Xét ΔABC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)

=>6/BC=1/2

=>BC=12(cm)

=>\(AC=6\sqrt{3}\left(cm\right)\)

Xét ΔABC có CD là đường phân giác

nên AD/AC=DB/BC

\(\Leftrightarrow\dfrac{AD}{6\sqrt{3}}=\dfrac{DB}{12}\)

mà AD+DB=6

nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{AD}{6\sqrt{3}}=\dfrac{DB}{12}=\dfrac{AD+DB}{6\sqrt{3}+12}=\dfrac{6}{12+6\sqrt{3}}=2-\sqrt{3}\)

Do đó: \(AD=12\sqrt{3}-18\left(cm\right);DB=24-12\sqrt{3}\left(cm\right)\)

Bình luận (1)
NB
Xem chi tiết
NT
1 tháng 7 2023 lúc 21:53

a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMD đồng dạng với ΔCAB

b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có

góc MBI chung

=>ΔBMI đồng dạng với ΔBAC

=>BM/BA=BI/BC

=>BM*BC=BA*BI

c: ΔCMD đồng dạng với ΔCAB

=>CM/CA=CD/CB

=>CM/CD=CA/CB

=>ΔCMA đồng dạng với ΔCDB

=>S CMA/S CDB=(CA/CB)^2=1/4

=>S CMA=15cm2

Bình luận (0)
NN
Xem chi tiết
H24
24 tháng 3 2021 lúc 20:02

\(BC=BH+HC=2+8=10\left(cm\right)\)

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2=10^2-6^2=64\\ \Rightarrow AB=8\left(cm\right)\)

Bình luận (0)
HT
Xem chi tiết
NT
30 tháng 4 2022 lúc 18:50

a: \(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AC chung

AB=AD

Do đó: ΔABC=ΔADC

c: Ta có: ΔABC=ΔADC

nên BC=DC

hay ΔCBD cân tại C

Bình luận (0)
H24
Xem chi tiết
MN
1 tháng 6 2021 lúc 10:44

Áp dung hệ thức lượng trong tam giác vuông ABC : 

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\)

\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+AC^2}}{AB\cdot AC}\)

\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+\left(\dfrac{4AB}{3}\right)^2}}{AB\cdot\dfrac{4AB}{3}}=\dfrac{5AB}{4}\)

\(\Rightarrow AB=\dfrac{4\cdot\dfrac{12}{5a}}{5}=\dfrac{48}{25}a\)

\(BC=\dfrac{AB\cdot AC}{AH}=\dfrac{AB\cdot\dfrac{4}{3}AB}{\dfrac{5}{4}\cdot AB}=\dfrac{16}{15}AB=\dfrac{16}{15}\cdot\dfrac{48}{25}\cdot a=2.048a\)

Bình luận (0)
LM
Xem chi tiết
H24
27 tháng 2 2022 lúc 11:00

Xét tam giác vuông ABC có:

\(AB^2+AC^2=BC^2\\ =>3^2+AC^2=5^2\\ =>AC^2=16\\ =>AC=4cm\)

Bình luận (1)
TL
27 tháng 2 2022 lúc 11:04

= 4cm

Bình luận (1)
HH
27 tháng 2 2022 lúc 15:50

= 4cm

Bình luận (0)