: Cho ΔABC vuông tại A có AB = 5cm, AC = 12cm.
a/ Tính BC.
b/ Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ΔABC = ΔADC.
c/ Chứng minh : BCD cân tại C.
d/ Vẽ đường thẳng qua A song song với BC cắt CD tại E, BE cắt AC tại G. Chứng minh : G là
trọng tâm của BDC. ( Dành cho các lớp 7 A, B, C)
CÂU D THOI CX ĐC:))
a: \(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD
Do đó: ΔABC=ΔADC
c: Ta có: ΔABC=ΔADC
nên BC=DC
hay ΔCBD cân tại C