Những câu hỏi liên quan
LN
Xem chi tiết
VH
26 tháng 4 2019 lúc 18:59

1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)

\(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0

\(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0

\(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0

\(\sqrt{6x^2-18x+12}-6\) > 0

\(\sqrt{6x^2-18x+12}>6\)

\(6x^2-18x+12>36\)

\(6x^2-18x-24>0\)

\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)

đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)

b) ĐKXĐ: \(\forall x\) ϵ R

\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)

\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)

Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
TH
Xem chi tiết
DB
25 tháng 4 2018 lúc 10:38

Câu 1:

a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)

\(\Leftrightarrow12x-10x-4=21-9x\)

\(\Leftrightarrow11x=25\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)

c) \(\left|3x\right|=4x+8\) (1)

Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)

\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)

Với \(x\ge0\), phương trình (1) có dạng:

\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)

(không thoả mãn điều kiện) \(\rightarrow\) loại

Với \(x< 0\), phương trình (1) có dạng:

\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)

(thoả mãn điều kiện) \(\rightarrow\) nhận

Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)

Bình luận (0)
DB
25 tháng 4 2018 lúc 10:40

Câu 2:

\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)

\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)

\(\Leftrightarrow-3x\ge-6\)

\(\Leftrightarrow x\le2\)

Vậy bất phương trình đã cho có nghiệm \(x\le2\)

Bình luận (0)
TQ
25 tháng 4 2018 lúc 10:45

\(1.\)

\(a.\) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{24x}{24}-\dfrac{4\left(5x+2\right)}{24}=\dfrac{6\left(7-3x\right)}{24}\)

\(\Leftrightarrow24x-4\left(5x+2\right)=6\left(7-3x\right)\)

\(\Leftrightarrow24x-20x-8=42-18x\)

\(\Leftrightarrow24x-20x+18x=42+8\)

\(\Leftrightarrow22x=50\)

\(\Leftrightarrow x=\dfrac{50}{22}=\dfrac{25}{11}\)

Vậy : ...........

\(b.\) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\7-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy : ..............

\(c.\) \(\left|3x\right|=4x+8\) \(\left(1\right)\)

* Với \(3x< 0\Rightarrow x< 0\)

\(\left|3x\right|=-3x\)

Khi đó : \(\left(1\right)\Rightarrow-3x=4x+8\)

\(\Rightarrow-3x-4x=8\)

\(\Rightarrow-7x=8\)

\(\Rightarrow x=-\dfrac{8}{7}\) ( Thoả mãn điều kiện )

* Với \(3x\ge0\Rightarrow x\ge0\)

\(\left|3x\right|=3x\)

Khi đó : \(\left(1\right)\Rightarrow3x=4x+8\)

\(\Rightarrow3x-4x=8\)

\(\Rightarrow-x=8\)

\(\Rightarrow x=-8\) ( Không thoả mãn điều kiện )

Vậy : ..............

\(2.\)

\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)

\(\Leftrightarrow12x^2-2x\ge\left(12x^2+9x-8x-6\right)\)

\(\Leftrightarrow12x^2-2x-12x^2-9x+8x\ge-6\)

\(\Leftrightarrow-3x\ge-6\)

\(\Leftrightarrow x\le2\)

Vậy : ..............

Bình luận (1)
PT
Xem chi tiết
TT
Xem chi tiết
H24
28 tháng 2 2023 lúc 20:11

Bình luận (0)
NT
28 tháng 2 2023 lúc 20:07

(2): =>(4x^2-1)(x^2-6x+9)<=0

=>(4x^2-1)(x-3)^2<=0

TH1: (4x^2-1)(x-3)^2=0

=>x=3 hoặc \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

TH2: (4x^2-1)(x-3)^2<0

=>4x^2-1<0

=>-1/2<x<1/2

Bình luận (0)
HM
Xem chi tiết
NL
30 tháng 5 2020 lúc 17:20

a/ ĐKXĐ \(x\ge1\)

\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)

\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)

\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)

\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)

Vậy nghiệm của BPT là \(1\le x< 2\)

b/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)

\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)

\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)

\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)

\(\Rightarrow3\le x< 4\)

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)

\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)

- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge\frac{2}{3}\) hai vế ko âm

\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)

\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)

Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)

Bình luận (0)
H24
Xem chi tiết
VN
Xem chi tiết
H24
31 tháng 8 2021 lúc 11:34

a) \(\left(3x-2\right)\left(3x+2\right)-\left(3x+4\right)^2=20\\ \Rightarrow9x^2-4-9x^2-24x-16-20=0\\ \Rightarrow-24x-40=0\\ \Rightarrow-24x=40\\ \Rightarrow x=-\dfrac{5}{3}\)

b) \(6x^2-2x\left(3x+1\right)=10\\ \Rightarrow6x^2-6x^2-2x=10\\ \Rightarrow-2x=10\\ \Rightarrow x=-5\)

c) \(x^2+4x+3=0\\ \Rightarrow\left(x+1\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Bình luận (0)