Giả bpt:
20 – 3x > 6x – 1
1 giải bpt \(\sqrt{6x^2-18x+12}< 3x+10-x^2\)
2 giải bpt \(\left(x-2\right)\sqrt{x^2+4}\le x^2-4\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)
⇔ \(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0
⇔ \(\sqrt{6x^2-18x+12}-6\) > 0
⇔ \(\sqrt{6x^2-18x+12}>6\)
⇔\(6x^2-18x+12>36\)
⇔ \(6x^2-18x-24>0\)
⇔\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)
đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)
b) ĐKXĐ: \(\forall x\) ϵ R
\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)
⇔\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)
Giải BPT: \(\sqrt[4]{\left(x-2\right).\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\le x^3+30\)
Giải BPT: \(\sqrt[4]{\left(x-2\right).\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\le x^3+30\)
1. Giải các phương trình sau:
a. x-\(\dfrac{5x+2}{6}\)=\(\dfrac{7-3x}{4}\)
b. (3x-1)(x-3)(7-2x)=0
c. /3x/=4x+8
2. Giải bpt:
2x(6x-1)≥(3x-2)(4x+3)
Câu 1:
a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)
\(\Leftrightarrow12x-10x-4=21-9x\)
\(\Leftrightarrow11x=25\)
\(\Leftrightarrow x=\dfrac{25}{11}\)
b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)
c) \(\left|3x\right|=4x+8\) (1)
Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)
\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)
Với \(x\ge0\), phương trình (1) có dạng:
\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)
(không thoả mãn điều kiện) \(\rightarrow\) loại
Với \(x< 0\), phương trình (1) có dạng:
\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)
(thoả mãn điều kiện) \(\rightarrow\) nhận
Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)
Câu 2:
\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
Vậy bất phương trình đã cho có nghiệm \(x\le2\)
\(1.\)
\(a.\) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
\(\Leftrightarrow\dfrac{24x}{24}-\dfrac{4\left(5x+2\right)}{24}=\dfrac{6\left(7-3x\right)}{24}\)
\(\Leftrightarrow24x-4\left(5x+2\right)=6\left(7-3x\right)\)
\(\Leftrightarrow24x-20x-8=42-18x\)
\(\Leftrightarrow24x-20x+18x=42+8\)
\(\Leftrightarrow22x=50\)
\(\Leftrightarrow x=\dfrac{50}{22}=\dfrac{25}{11}\)
Vậy : ...........
\(b.\) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\7-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy : ..............
\(c.\) \(\left|3x\right|=4x+8\) \(\left(1\right)\)
* Với \(3x< 0\Rightarrow x< 0\)
\(\left|3x\right|=-3x\)
Khi đó : \(\left(1\right)\Rightarrow-3x=4x+8\)
\(\Rightarrow-3x-4x=8\)
\(\Rightarrow-7x=8\)
\(\Rightarrow x=-\dfrac{8}{7}\) ( Thoả mãn điều kiện )
* Với \(3x\ge0\Rightarrow x\ge0\)
\(\left|3x\right|=3x\)
Khi đó : \(\left(1\right)\Rightarrow3x=4x+8\)
\(\Rightarrow3x-4x=8\)
\(\Rightarrow-x=8\)
\(\Rightarrow x=-8\) ( Không thoả mãn điều kiện )
Vậy : ..............
\(2.\)
\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x\ge\left(12x^2+9x-8x-6\right)\)
\(\Leftrightarrow12x^2-2x-12x^2-9x+8x\ge-6\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
Vậy : ..............
giai bpt: \(2\sqrt{3x+4}+3\sqrt{5x+9}\ge x^2+6x+13\)
1) cho hàm số bậc hai \(y=x^2-3x+2\) có đồ thị (P). xác định tham số m để đg thẳng \(y=-m+2\) cắt (P)
(2) giải bpt: \(\left(4x^2-1\right)\left(-x^2+6x-9\right)\ge0\)
giúp mk vs ạ mk cần gấp
(2): =>(4x^2-1)(x^2-6x+9)<=0
=>(4x^2-1)(x-3)^2<=0
TH1: (4x^2-1)(x-3)^2=0
=>x=3 hoặc \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
TH2: (4x^2-1)(x-3)^2<0
=>4x^2-1<0
=>-1/2<x<1/2
giải các bpt sau:
\(\sqrt{x+2}+\sqrt{x-1}< \sqrt{3x+3}\)
\(\sqrt{x-3}+\sqrt{2x+1}< \sqrt{5x-4}\)
\(\sqrt{x+2}+\sqrt{2x-1}\ge\sqrt{6x-1}\)
a/ ĐKXĐ \(x\ge1\)
\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)
\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)
\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)
\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)
Vậy nghiệm của BPT là \(1\le x< 2\)
b/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)
\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)
\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)
\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)
\(\Rightarrow3\le x< 4\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)
\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)
- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge\frac{2}{3}\) hai vế ko âm
\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)
\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)
Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)
a, giải pt: \(4x+6=\left(x-1\right)\sqrt{6x^2-x-6}\)
b, tìm đk của bpt: \(\frac{\left(3x-1\right)}{\sqrt[3]{x+1}}\)+3< \(|x-2|\)
a) (3x-2)(3x+2)-(3x+4)²=20 b) 6x²-2x(3x+1)=10 c) x²+4x+3=0
a) \(\left(3x-2\right)\left(3x+2\right)-\left(3x+4\right)^2=20\\ \Rightarrow9x^2-4-9x^2-24x-16-20=0\\ \Rightarrow-24x-40=0\\ \Rightarrow-24x=40\\ \Rightarrow x=-\dfrac{5}{3}\)
b) \(6x^2-2x\left(3x+1\right)=10\\ \Rightarrow6x^2-6x^2-2x=10\\ \Rightarrow-2x=10\\ \Rightarrow x=-5\)
c) \(x^2+4x+3=0\\ \Rightarrow\left(x+1\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)