Những câu hỏi liên quan
H24
Xem chi tiết
NT
19 tháng 8 2023 lúc 0:31

\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

=>\(\dfrac{sin^2a+1}{cos^2a}+\dfrac{cos^2a+1}{sin^2a}=7\)

=>\(\dfrac{sin^4a+sin^2a+cos^4a+cos^2a}{sin^2a\cdot cos^2a}=7\)

=>\(sin^4a+cos^4a+1=7\cdot sin^2a\cdot cos^2a\)

=>\(\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a+1=7\cdot sin^2a\cdot cos^2a\)

=>\(2=9\cdot sin^2a\cdot cos^2a\)

=>\(8=9\cdot sin^22a\)

=>16=9(1-cos4a)

=>1-cos4a=16/9

=>cos4a=-7/9

Bình luận (0)
LA
Xem chi tiết
AH
24 tháng 8 2020 lúc 18:14

Lời giải:

Áp dụng công thức: $\cos 2x=\cos ^2x-\sin ^2x=1-2\sin ^2x=2\cos ^2x-1$ ta có:

\(\frac{6+2\cos 4a}{1-\cos 4a}=\frac{6+2(2\cos ^22a-1)}{2\sin ^22a}=\frac{2+2\cos ^22a}{\sin ^22a}=\frac{2+2(\cos ^2a-\sin ^2a)^2}{4\sin ^2a\cos ^2a}\)

\(=\frac{1+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{(\sin ^2a+\cos ^2a)^2+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{2(\sin ^4a+\cos ^4a)}{2\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a}{\sin ^2a\cos ^2a}\)

\(=\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}=\tan ^2a+\cot ^2a\) (đpcm)

Bình luận (0)
LM
Xem chi tiết
NL
14 tháng 6 2020 lúc 19:52

\(cot^2a+tan^2a=\frac{cos^2a}{sin^2a}+\frac{sin^2a}{cos^2a}=\frac{cos^4a+sin^4a}{sin^2a.cos^2a}=\frac{8\left(\frac{1+cos2a}{2}\right)^2+8\left(\frac{1-cos2a}{2}\right)^2}{2\left(2sina.cosa\right)^2}\)

\(=\frac{2+4cos2a+2cos^22a+2-4cos2a+2cos^22a}{2sin^22a}=\frac{4+4cos^22a}{2sin^22a}\)

\(=\frac{4+4\left(\frac{1+cos4a}{2}\right)}{2\left(\frac{1-cos4a}{2}\right)}=\frac{6+2cos4a}{1-cos4a}\)

Bình luận (0)
SK
Xem chi tiết
SK
Xem chi tiết
HB
27 tháng 4 2017 lúc 17:19

Hỏi đáp Toán

Bình luận (0)
ST
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NL
10 tháng 4 2019 lúc 15:36

\(cos^4a+sin^4a-6sin^2a.cos^2a\)

\(=cos^4a+sin^4a-2sin^2a.cos^2a-4sin^2a.cos^2a\)

\(=\left(cos^2a-sin^2a\right)^2-\left(2sina.cosa\right)^2\)

\(=cos^22a-sin^22a\)

\(=cos4a\)

Bình luận (0)
SK
Xem chi tiết