Những câu hỏi liên quan
H24
Xem chi tiết
NT
1 tháng 9 2021 lúc 22:41

Ta có: \(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{2x\sqrt{x}-2x+\sqrt{x}-1-x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x}{x+\sqrt{x}+1}\)

\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\cdot\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+\sqrt{x}+1\right)}{\left(x-1\right)\left(x-\sqrt{x}+1\right)}\)

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 9 2021 lúc 20:31

Ta có: \(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{2x\sqrt{x}-2x+\sqrt{x}-1-x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x}{x+\sqrt{x}+1}\)

\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)\cdot\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\cdot\left(x-\sqrt{x}+1\right)}\)

Bình luận (1)
H24
Xem chi tiết
NT
29 tháng 5 2022 lúc 13:11

\(C=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{1}{x-1}\)

Bình luận (0)
H24
29 tháng 5 2022 lúc 6:18

làm chi tiết hộ e vs ạ

Bình luận (0)
NH
Xem chi tiết
NT
28 tháng 1 2024 lúc 23:06

\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\cdot\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

Bình luận (0)
NS
Xem chi tiết
NT
6 tháng 3 2022 lúc 15:47

Câu 1 : 

a, \(=8+4-2.6=12-12=0\)

b, đk : x > 0 ; x khác 1 

\(P=\left(\dfrac{\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}=\dfrac{1-\sqrt{x}}{1-\sqrt{x}}=1\)

Bình luận (0)
TN
Xem chi tiết
NT
28 tháng 6 2021 lúc 11:34

e) Ta có: \(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\cdot\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2x-3\sqrt{x}+1\right)-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{2x\sqrt{x}-3x+\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-4x}{x+\sqrt{x}+1}\cdot\dfrac{1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-4x+\sqrt{x}\left(x+\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x+x\sqrt{x}+x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{2x\sqrt{x}-3x+\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)

 

Bình luận (0)
NT
28 tháng 6 2021 lúc 11:36

m) Ta có: \(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1}\right)\)

\(=\left(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\sqrt{a}-1-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-3}\)

\(=\left(\sqrt{a}-1\right)\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}\left(\sqrt{a}-3\right)}\)

Bình luận (0)
NL
28 tháng 6 2021 lúc 11:37

\(E=\left(\dfrac{\sqrt{x}\left(2\sqrt{x^2}+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}+1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(M=\left(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\sqrt{a}-1-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}-3}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)^2}{\sqrt{a}\left(\sqrt{a}-3\right)}\)

 

 

Bình luận (0)
ST
Xem chi tiết
NT
20 tháng 1 2024 lúc 12:17

a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

=>\(\sqrt{x}< 1\)

=>\(0< =x< 1\)

c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:

\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)

\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}-1}{2}\)

Bình luận (0)
DA
Xem chi tiết
NT
30 tháng 6 2021 lúc 21:12

*Rút gọn

Ta có: \(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

Ta có: \(C=x-\sqrt{x}+1\)

\(=x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\sqrt{x}=\dfrac{1}{2}\)

hay \(x=\dfrac{1}{4}\)

Bình luận (0)
LH
30 tháng 6 2021 lúc 21:17

\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\left(x>0;x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)

Vậy  \(C_{min}=\dfrac{3}{4}\)

\(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}\)

Áp dụng AM-GM có: \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\)

Dấu "=" xảy ra khi x=1 (ktm đk)

Suy ra dấu bằng ko xảy ra \(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2-1=1\)

\(\Rightarrow\dfrac{2}{\sqrt{x}+\dfrac{1}{\sqrt{x}}-1}< 2\) 

\(\Rightarrow N< 2\) mà \(N>0\),\(N\) nguyên

\(\Rightarrow N=1\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{5}}{2}\\\sqrt{x}=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7+3\sqrt{5}}{2}\\x=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\) (tm)

Vậy...

Bình luận (0)
H24
30 tháng 6 2021 lúc 21:18

\(\Rightarrow C=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\) * \(\Rightarrow C=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

* Ta có \(N=\dfrac{2\sqrt{x}}{C}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}>0\left(1\right)\) 

Xét \(N-2=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2x+2\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2x+4\sqrt{x}-2}{x-\sqrt{x}+1}=\dfrac{-2\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}< 0\left(dox\ne1\right)\Rightarrow N< 2\left(2\right)\) Từ (1) và (2) \(\Rightarrow0< N< 2\). Mà N nguyên nên N=1  \(\Rightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}=1\Rightarrow2\sqrt{x}=x-\sqrt{x}+1\Leftrightarrow x-3\sqrt{x}+1=0\)

\(\Delta=9-4=5\Rightarrow\) pt có 2 nghiệm phân biệt: \(x_1=\dfrac{\sqrt{5}+3}{2}\left(TM\right);x_2=\dfrac{3-\sqrt{5}}{2}\left(TM\right)\)

Bình luận (1)
H24
Xem chi tiết
NL
22 tháng 7 2021 lúc 7:54

\(A=\left(\dfrac{2x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right)\)

\(=\left(\dfrac{2x+\sqrt{x}-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(=\left(\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\sqrt{x}-1\right)^2\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b. Đặt \(B=A-2x\)

\(B=\sqrt{x}-1-2x=-2\left(\sqrt{x}-\dfrac{1}{4}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}\)

\(B_{max}=-\dfrac{7}{8}\) khi \(\sqrt{x}-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Bình luận (0)
GC
Xem chi tiết
NT
19 tháng 1 2022 lúc 23:13

a, x > 0 ; x khác 1 

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)

\(=\left(\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{1}{\sqrt{x}-1}=\dfrac{x-2}{\sqrt{x}}\)

b, Ta có : \(P=\dfrac{x-2}{\sqrt{x}}=1\Rightarrow x-2=\sqrt{x}\)

\(\Leftrightarrow x-\sqrt{x}-2=0\Leftrightarrow\left(\sqrt{x}+1>0\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=4\)(tm) 

Bình luận (0)
NT
19 tháng 1 2022 lúc 23:12

a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-2}{\sqrt{x}}\)

b: Để P=1 thì \(x-\sqrt{x}-2=0\)

hay x=4

Bình luận (0)