\(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\sqrt{x}-1\)
\(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\sqrt{x}-1\)
Rút gọn biểu thức:
\(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\) với \(0\le x\ne1\)
Rút gọn biêu thức:
\(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\) với \(0\le x\ne1\)
Rút gọn \(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\left(x>0;x\ne1\right)\)
Cho biểu thức \(P=\left(\dfrac{\sqrt{x-2}}{x-1}-\dfrac{\sqrt{x+2}}{x+2\sqrt{x+1}}\right):\left(\dfrac{2}{x^2-2x+1}\right)\) với \(x\ge0;x\ne1\)
`a)` Rút gọn `P`
`b)` Tìm các giá trị của `x` để `P>0`
`c)` Tính giá trị của `P` khi \(x=7-4\)\(\sqrt{3}\)
`d)` Tìm GTLN của `P` và giá trị tương ứng của `x`
Rút gọn
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) với \(x>0,x\ne1\)
- tìm GTNN của C
- tìm x để N= \(\dfrac{2\sqrt{x}}{C}\) nhận giá trị nguyên
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\left(x>0,x\ne1\right)\)
a, Rút gọn P
b, Tìm x để P=1
Cho biểu thức
B= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\:\:\left(x\ge0,x\ne1\right)\)
a) Rút gọn B
b) Tìm x khi B = 3
c) Tính giá trị B khi \(x=3-2\sqrt{2}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0;\(x\ne1;x\ne4\)
a, rút gọn
b, với giá trị nào của x thì P có giá trị =\(\dfrac{1}{4}\)
c, tìm giá trị của Ptại \(x=4+2\sqrt{3}\)
Cho \(A=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)vớix\ge0,x\ne1\)
a) Rút gọn A
b) Tìm x để A=3
c) Tìm x ϵ N để A≤ 5
Cho hai biểu thức:
A= \(3+\sqrt[3]{-8}.\sqrt{3}+\sqrt[3]{27}.\sqrt{3}-\sqrt{7+4\sqrt{3}}\)
B= \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\left(x>0;x\ne1\right)\)
a) Rút gọn A,B
b) Tìm các giá trị của x để B<A?
Help !!!