Những câu hỏi liên quan
NN
Xem chi tiết
NL
13 tháng 5 2017 lúc 18:55

1. Ta có :

B(x)=x2+5    mà    xluôn > hoặc = 0

                       và 5>0

=>x2+5 luôn > 0

Vậy đa thức B(x) không có nghiệm

Bình luận (0)
H24
13 tháng 5 2017 lúc 19:11

Ta có : B ( x ) = x^2 + 5

Mà x^2 lớn hơn hoặc bằng 0

5 > 0

Suy ra x^2 + 5 > 0

Suy ra đa thức B ( x ) không có nghiệm

Bình luận (0)
DL
Xem chi tiết
NT
13 tháng 8 2017 lúc 15:16

Bài 3:
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right)\left(\dfrac{9}{2\left(a+b+c\right)}\right)-3\)

\(=\dfrac{9}{2}-3=1,5\)

Dấu " = " khi a = b = c

Bài 5:

Áp dụng bất đẳng thức AM - GM có:
\(a^2+b^2+c^2+d^2\ge2ab+2cd\ge4\sqrt{abcd}\)

Dấu " = " khi a = b = c = d = 1

Bình luận (0)
UK
13 tháng 8 2017 lúc 16:09

7) VP phải là abc nha

\(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế của 3 BĐT trên

\(\left[VT\right]^2\le VP^2\)

Các biểu thức trong ngoặc vuông đều dương nên khai phương ta được đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c

Bình luận (0)
UK
13 tháng 8 2017 lúc 16:11

2) Giả sử \(a\le0\):

Nếu a=0 thì trái với abc>0

Nếu a<0: Do a+b+c>0 nên b+c>0. Do abc>0 nên bc<0

Suy ra a(b+c)+bc<0, mâu thuẫn với ab+bc+ca>0

Vậy a>0

Tương tự ta có b>0;c>0

Bình luận (0)
TT
Xem chi tiết
NL
7 tháng 5 2020 lúc 14:25

\(x^2+y^2+z^2-2x+4y-6z=15\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\)

Đặt \(P=\left|2x-3y+4z-20\right|=\left|2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right|\)

\(P^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\)

\(P^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\)

\(\Rightarrow P\le29\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\\\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-3}{4}\end{matrix}\right.\)

Bình luận (0)
PT
Xem chi tiết
NP
8 tháng 7 2018 lúc 23:01

Ta có:\(B=3-10x^2-4xy-4y^2\)

           \(=3-9x^2-x^2-4xy-4y^2\)

            \(=3-9x^2-\left(x^2+4xy+4y^2\right)\)

            \(=3-\left(3x\right)^2-\left(x+2y\right)^2\)

Vì \(\hept{\begin{cases}\left(3x\right)^2\ge0\\\left(x+2y\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-\left(3x\right)^2\le0\\-\left(x+2y\right)^2\le0\end{cases}}\)

\(\Rightarrow B=3-\left(3x\right)^2-\left(x+2y\right)^2\le3-0-0=3\)

Nên GTLN của B là 3 đạt được khi \(\hept{\begin{cases}3x=0\\x+2y=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=-x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=0\end{cases}\Leftrightarrow}x=y=0\)

Bình luận (0)
PT
8 tháng 7 2018 lúc 23:40

Nhìn đề bài giùm chút đi ạ

Bình luận (0)
HT
Xem chi tiết
H24
9 tháng 6 2021 lúc 8:36

`|x-1|+2020|x-2|+|x-3|`

`=|x-1|+|3-x|+2020|x-2|`

Áp dụng BĐT `|A|+|B|>=|A+B|`

`=>|x-1|+|3-x|>=|x-1+3-x|=2`

Mà `|x-2|>=0=>2020|x-2|>=0`

`=>|x-1|+2020|x-2|+|x-3|>=2`

Dấu "=" xảy ra khi $\begin{cases}(x-1)(3-x) \ge 0\\x-2=0\\\end{cases}$

`<=>` $\begin{cases}(x-1)(x-3) \le 0\\x=2\\\end{cases}$

`<=>` $\begin{cases}1 \le x \le 3\\x=2\\\end{cases}$

`<=>x=2`

Bình luận (0)
LA
Xem chi tiết
NT
25 tháng 2 2020 lúc 20:12

a) Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\)(đpcm)

b) Ta có: \(-x^2+2x-4=-\left(x^2-2x+4\right)=-\left(x^2-2x+1+3\right)=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3< 0\forall x\)

hay \(-x^2+2x-4< 0\forall x\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
O1
Xem chi tiết
NT
14 tháng 10 2021 lúc 23:51

Xét ΔABD có 

M là trung điểm của AB

X là trung điểm của AD

Do đó: MX là đường trung bình của ΔABD

Suy ra: MX//BD và \(MX=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra XM//NP và XM=NP

Xét tứ giác XMNP có

XM//NP

XM=NP

Do đó: XMNP là hình bình hành

Suy ra: Hai đường chéo XN và MP cắt nhau tại trung điểm của mỗi đường

hay I là trung điểm của MP

Bình luận (0)
HC
Xem chi tiết
HT
Xem chi tiết
H24
9 tháng 6 2021 lúc 8:09

`C=|x+2|+|x-4|+2020`
`=|x+2|+|4-x|+2020`
Áp dụng BĐT `|A|+|B|>=|A+B|`
`=>|x+2|+|4-x|>=|x+2+4-x|=6`
`=>C>=2020+6=2026`
Dấu "=" xảy ra khi `(x+2)(4-x)>=0<=>(x+2)(x-4)<=0<=>-2<=x<=4`

Bình luận (3)

C=|x+2|+|x−4|+2020C=|x+2|+|x-4|+2020
=|x+2|+|4−x|+2020=|x+2|+|4-x|+2020
Áp dụng BĐT |A|+|B|≥|A+B||A|+|B|≥|A+B|
⇒|x+2|+|4−x|≥|x+2+4−x|=6⇒|x+2|+|4-x|≥|x+2+4-x|=6
⇒C≥2020+6=2026⇒C≥2020+6=2026
Dấu "=" xảy ra khi (x+2)(4−x)≥0⇔(x+2)(x−4)≤0⇔−2≤x≤4(x+2)(4-x)≥0⇔(x+2)(x-4)≤0⇔-2≤x≤4

Bình luận (0)