Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 8

TT

Các số thực x, y, z thỏa mãn x2 + y2 + z2 - 2 x + 4 y - 6 z = 15 Chứng minh rằng: |2 x - 3 y + 4 z - 20| ≤ 29

NL
7 tháng 5 2020 lúc 14:25

\(x^2+y^2+z^2-2x+4y-6z=15\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\)

Đặt \(P=\left|2x-3y+4z-20\right|=\left|2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right|\)

\(P^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\)

\(P^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\)

\(\Rightarrow P\le29\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\\\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-3}{4}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
LL
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
BB
Xem chi tiết
TB
Xem chi tiết
DF
Xem chi tiết
ND
Xem chi tiết