Giải bpt theo m là tham số: x(m^2 - 4) > 3m
Cho bpt \(\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\) . Gọi S là tập hợp các số nguyên dương m để bpt đúng với mọi x < -4
\(f\left(x\right)=\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\)
TH1: \(m=2\)
Bất phương trình tương đương \(-4x+9\le0\Leftrightarrow x\ge\dfrac{9}{4}\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
TH2: \(m>2\)
\(f\left(x\right)\le0\forall x\in\left(x_1;x_2\right)\)
\(\Rightarrow m>2\) không thỏa mãn yêu cầu bài toán
TH3: \(m< 2\)
+) \(\Delta=-m^2+7m-6\le0\Leftrightarrow\left[{}\begin{matrix}m\le1\\m\ge6\end{matrix}\right.\)
\(f\left(x\right)\le0\forall x\in R\Rightarrow f\left(x\right)\le0\forall x< -4\)
Kết hợp điều kiện \(m< 2\) ta được \(m\le1\) thỏa mãn yêu cầu bài toán
+) \(\Delta=-m^2+7m-6>0\Leftrightarrow1< m< 6\)
Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)\) có hai nghiệm phân biệt thỏa mãn \(x_2>x_1\ge-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right).f\left(-4\right)\ge0\\\dfrac{3m-4}{m-2}>-4\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Vậy \(S=(-\infty;1]\)
Không biết đúng chưa, bài này phức tạp quá.
Với những giá trị nào của tham số m thì bpt x2-(3m-1)x+3m-2>0 nghiệm đúng bới mọi |x|>=2
f(x) = (m+1)x² - 2(m+1)x + 2m+3
♠ m = -1: f(x) = 0.x² - 0.x + 1 = 1 > 0 với mọi x nên f(x) ≥ 0 có nghiệm x thuộc R
♠ m # -1, có ∆' = (m+1)² - (m+1)(2m+3) = -(m+1)(m+2)
ta biện luận theo dấu của delta':
m│ -∞________ -2 _________ -1 ________ +∞
∆ │≈≈≈≈≈ - ≈≈≈≈ 0 ≈≈≈≈ + ≈≈≈≈ || ≈≈≈≈ - ≈≈≈≈≈≈
* nếu m < -2 => ∆' < 0, m+1 < 0 => f(x) < 0 với mọi x nên f(x) ≥ 0 vô nghiệm
* nếu m = -2 <=> ∆' = 0 và m+1 < 0 <=> f(x) ≤ 0 với mọi x thuộc R
=> f(x) ≥ 0 có nghiệm x = 2 (còn dính đc chổ có dấu "=" )
* -2 < m < -1 <=> ∆' > 0 ; f(x) có 2 lần đổi dấu => f(x) ≥ 0 có nghiệm
* nếu m > -1 => ∆' > 0 và m+1 > 0 => f(x) > 0 với mọi x => f(x) ≥ 0 có nghiệm
Tóm lại các trường hợp: bpt f(x) ≥ 0 có nghệm khi và chỉ khi m ≥ -2
~~~~~~~~~~
Cách khác: giải ngược lại ta tìm m để bpt f(x) ≥ 0 vô nghiệm
tức là f(x) < 0 với mọi x thuộc R
* nếu m = -1 thì như trên f(x) ≥ 0 có nghiêm
* nếu m # -1, f(x) < 0 với mọi x thuộc R khi và chỉ khi
{ ∆' < 0
{ m+1 < 0
<=> { m < -2 hoăc m > -1
----- { m < -1
<=> m < -2
Vậy bpt f(x) ≥ 0 có nghiệm khi và chỉ khi m ≥ -2
Cho bpt: (m-2)x^2 + 2(4-3m)x + 10m -11 ≤ 0 (1). Gọi S là tập hợp các số nguyên dương m để bpt đúng với mọi ∀x < -4. Tìm số phần tử của S.
giải BPT:
\(\dfrac{x-m-1}{x-2m+1}< 0\) (m là tham số)
- Với \(m=2\) BPT vô nghiệm
- Với \(m>2\) BPT có nghiệm \(m+1< x< 2m-1\)
- Với \(m< 2\) BPT có nghiệm \(2m-1< x< m+1\)
Giải pt với m là tham số:
m(mx-2)=x(3m+4)+2
\(m\left(mx-2\right)=x\left(3m+4\right)+2\)
\(m^2x-2m=3mx+4x+2\)
\(m^2x-2m-3mx-4x-2=0\)
\(m\left(mx-2-3x\right)-2\left(2x-1\right)=0\)
\(\orbr{\begin{cases}mx-2-3x=0\\2x-1=0\end{cases}}\)
đến đây tự làm tiếp
giải và biên luận BPT sau theo tham số m
\(\sqrt{x+2\sqrt{mx-m^2}}+\sqrt{x-2\sqrt{mx-m^2}}\le2\) với m > 0
\(x\ge m\)
\(\sqrt{x-m+2\sqrt{m\left(x-m\right)}+m}+\sqrt{x-m-2\sqrt{m\left(x-m\right)}+m}\le2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-m}+\sqrt{m}\right)^2}+\sqrt{\left(\sqrt{x-m}-\sqrt{m}\right)^2}\le2\)
\(\Leftrightarrow\sqrt{x-m}+\sqrt{m}+\left|\sqrt{x-m}-\sqrt{m}\right|\le2\)
- Nếu \(\sqrt{x-m}\ge\sqrt{m}\Leftrightarrow x\ge2m\) BPT trở thành:
\(2\sqrt{x-m}\le2\Leftrightarrow x\le m+1\Rightarrow2m\le x\le m+1\)
\(\Rightarrow m+1\ge2m\Rightarrow m\le1\)
- Nếu \(\sqrt{x-m}< \sqrt{m}\Leftrightarrow m\le x< 2m\) BPT trở thành:
\(2\sqrt{m}\le2\Rightarrow m\le1\)
Vậy nếu \(0< m\le1\) thì BPT có nghiệm \(m\le x\le m+1\)
Giải và biện luận theo tham số m:\(\frac{m}{x-m}+\frac{3m^2-4m+3}{m^2-x^2}=\frac{1}{x+m}\)
Chúc bạn học tốt!!!
Cho pt : x^2 - 2(m-1)x + m^2 - 3m + 4 = 0 (m là tham số) . a. Giải phương trình khi m = 2 . b, Tìm m để phương trình có 2 nghiệm phân biệt
a: Thay m=2 vào pt, ta được:
\(x^2-2x+2=0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-3m+4\right)>0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+12m-16>0\)
=>4m>12
hay m>3