\(\sqrt{x^2-6x+25}\) = 4
Bài tập:Giải các phương trình sau
1)\(\sqrt{-4^2+25}=x\)
2)\(\sqrt{x^2-10x+25}\)=2x+1
3)\(\sqrt{x^2-6x+9}+x=11\)
4)\(\sqrt{x^2-4x+3}=x-2\)
-tìm x-
1, \(\sqrt{4-4x+x^2}=3\)
2, \(\sqrt{x^2-6x+9}=1\)
3, \(\sqrt{25-10x+x^2}=1\)
1, \(\sqrt{4-4x+x^2}=3\)
\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)
\(\Leftrightarrow\left|2+x\right|=3\)
TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)
Pt trở thành:
\(2-x=3\) (ĐK: \(x\le2\) )
\(\Leftrightarrow x=2-3\)
\(\Leftrightarrow x=-1\left(tm\right)\)
TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)
Pt trở thành:
\(-\left(2-x\right)=3\) (ĐK: \(x>2\))
\(\Leftrightarrow-2+x=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\left(tm\right)\)
Vậy \(S=\left\{-1;5\right\}\)
2, \(\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{x^2-2\cdot3\cdot x+3^2}=1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow\left|x-3\right|=1\)
TH1: \(\left|x-3\right|=x-3\) với \(x-3\ge0\Leftrightarrow x\ge3\)
Pt trở thành:
\(x-3=1\) (ĐK: \(x\ge3\))
\(\Leftrightarrow x=1+3\)
\(\Leftrightarrow x=4\left(tm\right)\)
TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x-3< 0\Leftrightarrow x< 3\)
Pt trở thành:
\(-\left(x-3\right)=1\) (ĐK: \(x< 3\))
\(\Leftrightarrow-x+3=1\)
\(\Leftrightarrow-x=1-3\)
\(\Leftrightarrow-x=-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy \(S=\left\{2;4\right\}\)
1) √(4 - 4x + x²) = 3
⇔ √(2 - x)² = 3
ĐKXĐ: Với mọi x ∈ R
⇔ |2 - x| = 3 (1)
*) |2 - x| = 2 - x ⇔ 2 - x ≥ 0 ⇔ x ≥ 2
(1) ⇔ 2 - x = 3
⇔ x = 2 - 3
⇔ x = -1 (nhận)
*) |2 - x| = x - 2 ⇔ 2 - x < 0 ⇔ x > 2
(1) ⇔ x - 2 = 3
⇔ x = 5 (nhận)
Vậy x = -1; x = 5
Tìm GTNN của biểu thức M=\(\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
\(\sqrt{9x^2-6x+1}=4\)
\(\sqrt{10x^2+10x+25}=x+4\)
Em biết làm mỗi ý đầu thôi ạ :(
\(\sqrt{9x^2-6x+1}=4\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}=4\)
\(\Leftrightarrow\left|3x-1\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
Vậy S = { 5/3 ; -1 }
bạn kiểm tra lại đề bài câu (b) nhé! mình nghĩ là \(\sqrt{x^2+10x+25}=x+4\) chuẩn hơn
\(\sqrt{x^2+10x+25}=x+4\)
\(\Leftrightarrow\sqrt{\left(x+5\right)^2}=x+4\)
\(\Leftrightarrow x+5=x+4\)( mâu thuẩn )
\(\sqrt{9x^2-6x+1}=4\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}=4\)
\(\Leftrightarrow3x-1=4\Leftrightarrow x=\frac{5}{3}\)
giải phương trình
a)\(\sqrt{x^2-6x+9}=4\)
b)\(\sqrt{4x^2-4x+1}=5x+3\)
c)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
d)\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)
e)\(\sqrt{9x^2-12x+4}=\sqrt{x^2-10x+25}\)
a) \(\Leftrightarrow\sqrt{\left(x+3\right)^2}=4\)
\(\Leftrightarrow\left|x+3\right|=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) ( TM )
b) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5x+3\)
\(\Leftrightarrow\left|2x-1\right|=5x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+3\ge0\\\left[{}\begin{matrix}2x-1=5x+3\\2x-1=-5x-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{5}\\\left[{}\begin{matrix}x=-\frac{4}{3}\left(KTM\right)\\x=-\frac{2}{7}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)
a \(\sqrt{x^2+6x+9}=4\Leftrightarrow\sqrt{\left(x+3\right)^2=4}\)
\(\Leftrightarrow x+3=4\)
\(\Rightarrow x=1\)
Tìm GTNN của biểu thức
a)\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)
b)\(\sqrt{x^2+4x+4}+\sqrt{x^2-2x+1}+\sqrt{x^2-14x+49}\)
Tính :
a) \(\sqrt{x^2-10x+25}\)+ \(\sqrt{x^2-6x+9}\)với x > 5
b) \(\sqrt{x^2-6x+9}\)- \(\sqrt{x^2-4x+4}\)với -2 \(\le\)x < 3
a) \(\sqrt{x^2-10x+25}+\sqrt{x^2-6x+9}=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-3\right)^2}=\left|x-5\right|+\left|x-3\right|\)
Vì x > 5 nên x - 5 > 0 , x - 3 > 0
=> \(\left|x-5\right|+\left|x-3\right|=x-5+x-3=2x-8\)
b) Điều kiện phải là \(2\le x< 3\)
\(\sqrt{x^2-6x+9}-\sqrt{x^2-4x+4}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-2\right)^2}=\left|x-3\right|-\left|x-2\right|\)
Vì \(2\le x< 3\Rightarrow\hept{\begin{cases}x-2\ge0\\x-3< 0\end{cases}}\)
=> \(\left|x-3\right|-\left|x-2\right|=3-x-\left(x-2\right)=-2x+5\)
giải phương trình
a) \(\sqrt{3x+2}=2-\sqrt{3}\)
b) \(\sqrt{x^2-4x+4}=49\)
c) \(\sqrt{x+1}=x-1\)
d)\(\sqrt{x^2-6x+9}=x+3\)
e)\(\sqrt{x^2-10x+25}+\sqrt{9x^2+6x+1}=3x-2\)
a)\(\sqrt{3x+2}=2-\sqrt{3}\)
\(\Leftrightarrow3x+2=\left(2-\sqrt{3}\right)^2\)
\(\Leftrightarrow3x+2=7-4\sqrt{3}\)
\(\Leftrightarrow3x=7-2-4\sqrt{3}\)
\(\Leftrightarrow3x=5-4\sqrt{3}\)
\(\Leftrightarrow x=\dfrac{5}{3}-\dfrac{4\sqrt{3}}{3}\)
\(\Leftrightarrow x=\dfrac{5-4\sqrt{3}}{3}\)
b) \(\sqrt{x^2-4x+4}=49\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=49\)
\(\Leftrightarrow\left|x-2\right|=49\)\
\(\Leftrightarrow\left[{}\begin{matrix}x-2=49\\-x+2=49\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=51\\x=-47\end{matrix}\right.\)
c) \(\sqrt{x+1}=x-1\)
ĐKXĐ: \(x-1\ge0\Rightarrow x\ge1\)
\(\Leftrightarrow x+1=\left(x-1\right)^2\)
\(\Leftrightarrow x+1=x^2-2x+1\)
\(\Leftrightarrow-x^2+2x+x=-1+1\)
\(\Leftrightarrow3x-x^2=0\)
\(\Leftrightarrow x\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(lo\text{ại}\right)\\x=3\left(nh\text{ậ}n\right)\end{matrix}\right.\)
d)e) lát mình làm sau
1. Giải phương trình:
1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)
3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)
4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
5/ \(x^2-\left(m+1\right)x+2m-6=0\)
6/ \(615+x^2=2^y\)
2.
a, Cho các số dương a,b thoả mãn \(a+b=2ab\).
Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).
b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).
Tính GTNN và GTLN của biểu thức \(P=x+y\).
3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).
4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).
25. 7\(\sqrt{x}\)- 6x- 2
26.\(x^2\)-\(\sqrt{x}\)+x -1
27. 2a - 5\(\sqrt{ab}\)+ 3b
28.\(\sqrt{ab}\)+2\(\sqrt{a}\)+ 3\(\sqrt{b}\)+6
26: \(x^2-\sqrt{x}+x-1\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x\sqrt{x}+x+\sqrt{x}+\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x\sqrt{x}+x+2\sqrt{x}+1\right)\)
25: Ta có: \(-6x+7\sqrt{x}-2\)
\(=-6x+3\sqrt{x}+4\sqrt{x}-2\)
\(=-3\sqrt{x}\left(2\sqrt{x}-1\right)+2\left(2\sqrt{x}-1\right)\)
\(=\left(2\sqrt{x}-1\right)\left(2-3\sqrt{x}\right)\)
27: Ta có: \(2a-5\sqrt{ab}+3b\)
\(=2a-2\sqrt{ab}-3\sqrt{ab}+3b\)
\(=2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-3\sqrt{b}\right)\)
28: Ta có: \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)
\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)