Những câu hỏi liên quan
DH
Xem chi tiết
H24
26 tháng 12 2022 lúc 20:54

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)

Ta lấy vễ trên chia vế dưới

\(=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)

Ta lấy vế trên chia vế dưới

\(=2^3.3=24\)

Bình luận (0)
H24
26 tháng 12 2022 lúc 20:54

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

Bình luận (0)
NN
26 tháng 12 2022 lúc 20:54

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

Bình luận (0)
ML
Xem chi tiết
TD
7 tháng 5 2021 lúc 17:39

jimmmmmmmmmmmmmmmmmmmmmmmmmmm

Bình luận (0)
 Khách vãng lai đã xóa
MI

con cặc

he he he he he he

Bình luận (0)
 Khách vãng lai đã xóa
ND
16 tháng 9 2021 lúc 19:32

bài 1:

bn lấy giá trị của √(4^2-3,9^2) là dc

bài 2

AB+BC=2√(3^2+4^2)=??

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
HP
8 tháng 9 2016 lúc 21:20

đáp án đằng sau sách ấy

Bình luận (4)
TT
Xem chi tiết
NT
1 tháng 2 2024 lúc 14:44

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMB}=90^0\)

b: Xét ΔOMC vuông tại M có MH là đường cao

nên \(HC\cdot HO=HM^2\left(1\right)\)

Xét ΔMAB vuông tại M có MH là đường cao

nên \(HA\cdot HB=HM^2\left(2\right)\)

Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)

c: Xét tứ giác AMBQ có

O là trung điểm của AB và MQ

Do đó: AMBQ là hình bình hành

Hình bình hành AMBQ có AB=MQ

nên AMBQ là hình bình hành

Bình luận (0)
3T
Xem chi tiết
NT
12 tháng 2 2022 lúc 19:55

Chứng minh gì vậy bạn?

Bình luận (1)
PL
Xem chi tiết
GD
25 tháng 12 2021 lúc 16:22

Bài nào em nhỉ?

Bình luận (2)
LK
Xem chi tiết
MH
9 tháng 4 2022 lúc 18:15

Gọi phương trình đường thẳng đi qua 2 điểm \(A,B\) là \(y=mx+n\)

Do \(\left\{{}\begin{matrix}A\in AB\\B\in AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3=-m+n\\-3=2m+n\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=-2\\n=1\end{matrix}\right.\)

\(\Rightarrow AB:y=-2x+1\)

Do \(C\left(a,b\right)\in\left(d\right):y=2x-3\Rightarrow b=2a-3\)   (1)

Mặt khác, để \(A,B,C\) thẳng hàng thì \(C\in AB\Rightarrow b=-2a+1\)   (2)

Từ (1) và (2) ta có \(a=1,b=-1\) nên \(a+b=0\)

 

Bình luận (0)
NL
9 tháng 4 2022 lúc 18:16

Do C thuộc d nên: \(b=2a-3\) \(\Rightarrow C\left(a;2a-3\right)\)

Gọi phương trình đường thẳng d1 qua 2 điểm A; B có dạng:

\(y=mx+n\)

A; B thuộc d1 nên: \(\left\{{}\begin{matrix}3=-m+n\\-3=2m+n\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-2\\n=1\end{matrix}\right.\)

\(\Rightarrow\) Phương trình d1: \(y=-2x+1\)

A;B;C thẳng hàng khi và chỉ khi C thuộc d1

\(\Rightarrow2a-3=-2a+1\)

\(\Rightarrow4a=4\Rightarrow a=1\Rightarrow b=-1\)

\(\Rightarrow a+b=0\)

Bình luận (0)
BB
Xem chi tiết
H24
29 tháng 5 2023 lúc 11:09

Bài này làm khá tắt chỗ 3 điểm cực trị, mình trình bày lại để bạn dễ hiểu nhé!

.......

Để y' = 0\(\Leftrightarrow\left[{}\begin{matrix}x=1\\f'\left(\left(x-1\right)^2+m\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2+m=-1\\\left(x-1\right)^2+m=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^2=-1-m\left(1\right)\\\left(x-1\right)^2=3-m\left(2\right)\end{matrix}\right.\)

Để hàm số có 3 điểm cực trị thì y' = 0 có 3 nghiệm phân biệt. 

Ta có 2 trường hợp.

+) \(TH_1:\) (1) có nghiệm kép x = 1 hoặc vô nghiệm và (2) có hai nghiệm phân biệt khác 1.

\(\Rightarrow\left[{}\begin{matrix}-1-m\le0\\3-m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge-1\\m< 3\end{matrix}\right.\) \(\Leftrightarrow-1\le m< 3\)

+) \(TH_2:\) (2) có nghiệm kép x = 1 và (2) có một nghiệm phân biệt khác 1.

\(\Rightarrow\left[{}\begin{matrix}-1-m>0\\3-m\le0\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Leftrightarrow m\in\varnothing\)

\(\Rightarrow-1\le m< 3\Rightarrow S=\left\{-1;0;1;2\right\}\)

Do đó tổng các phần tử của S là \(-1+0+1+2=2\)

 

Bình luận (1)
H24
Xem chi tiết
NM
28 tháng 10 2021 lúc 18:58

\(=\left[\dfrac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\cdot\left(\sqrt{7}-\sqrt{5}\right)\\ =\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=7-5=2\)

Bình luận (0)