Những câu hỏi liên quan
HP
Xem chi tiết
NQ
18 tháng 4 2017 lúc 20:13

\(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{95\cdot97}+\dfrac{2}{97\cdot99}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}\)

\(=\dfrac{33}{99}-\dfrac{1}{99}\)

\(=\dfrac{32}{99}\)

Bình luận (0)
H24
18 tháng 4 2017 lúc 20:15

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{95.97}+\dfrac{2}{97.99}\)

\(\Rightarrow\dfrac{2}{3}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{2}{7}+...+\dfrac{2}{95}-\dfrac{2}{97}+\dfrac{2}{97}-\dfrac{2}{99}\)

\(\Rightarrow\dfrac{2}{3}-\dfrac{2}{99}=\dfrac{64}{99}\)

chúc bạn học tốtok

Bình luận (8)
H24
Xem chi tiết
NL
11 tháng 3 2023 lúc 19:07

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)

\(=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2023-2021}{2021.2023}\)

\(=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{2023}{2021.2023}-\dfrac{2021}{2021.2023}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)

Bình luận (0)
H9
11 tháng 3 2023 lúc 19:10

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}...+\dfrac{2}{2021.2023}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(=1-\dfrac{1}{2023}\)

\(=\dfrac{2023}{2023}-\dfrac{1}{2023}\)

\(=\dfrac{2022}{2023}\)

Bình luận (0)
NT
Xem chi tiết
DT
30 tháng 4 2022 lúc 11:31

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2020.2022}\)

 

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\)

 

\(=1-\dfrac{1}{2022}\)

 

\(=\dfrac{2021}{2022}\)

Bình luận (0)
DA
30 tháng 4 2022 lúc 12:42

2/2*[2/1-2/2022]=2021/1011

Bình luận (0)
NN
Xem chi tiết
NN
11 tháng 3 2023 lúc 20:24

\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)

Bình luận (3)
H24
Xem chi tiết
H24
9 tháng 5 2022 lúc 22:28

`A=2/[1.3]+2/[3.5]+2/[5.7]+.....+2/[99.101]`

`A=1-1/3+1/3-1/5+1/5-1/7+......+1/99-1/101`

`A=1-1/101=101-1/101=100/101`

Bình luận (0)
H24
9 tháng 5 2022 lúc 22:30

\(\dfrac{100}{101}\)

Bình luận (0)
H24
9 tháng 5 2022 lúc 22:33

A=2/1.3+2/3.5+2/5.7+...+2/99.101
   = 1/1 - 1/3 +1/3 - 1/5 +.... +1/99 - 1/101
   = 1-1/101
   =101/101-1/101
   =100/101   

Bình luận (0)
H24
Xem chi tiết
TH
14 tháng 3 2023 lúc 11:20

Không có mô tả.

Bình luận (0)
HL
Xem chi tiết
H24
27 tháng 5 2022 lúc 11:16

\(S=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{29\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{29}-\dfrac{1}{31}\\ =\dfrac{1}{1}-\dfrac{1}{31}\\ =\dfrac{30}{31}\)

mà \(\dfrac{30}{31}>\dfrac{2014}{2015}\Rightarrow S>P\)

 

Bình luận (0)
N2
27 tháng 5 2022 lúc 11:14

So sánh vs j nhỉ .-.?

`S=1-1/3+1/3-1/5+...+1/29-1/31`

`S=1-1/31=30/31`

Bình luận (23)
H24
27 tháng 5 2022 lúc 11:27

S=2.(1/1-1/3+1/3-1/5+1/5-1/7+...+1/27-1/29+1/29-1/31)

S=2.(1-1/31)

S=2.30/31

S=60/31

P=2014/2015

=>S>P hay 60/31 > 2014 / 2015

Bình luận (3)
NX
Xem chi tiết
NT
20 tháng 4 2021 lúc 21:14

Ta có : \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2020}=1-\dfrac{1}{2020}=\dfrac{2019}{2020}\)

mà \(2019< 2020\)nên P < 1 ( đpcm ) 

Bình luận (0)
DX
28 tháng 4 2021 lúc 11:58

\(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2019.2021}\) 

\(P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\) 

\(P=1-\dfrac{1}{2021}\) 

\(P=\dfrac{2020}{2021}\)

Vì \(\dfrac{2020}{2021}< 1\) ⇒ \(P< 1\) ( điều phải chứng minh ) 

Bình luận (0)
HL
Xem chi tiết
NT
18 tháng 5 2022 lúc 9:30

\(S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}=1-\dfrac{1}{31}=\dfrac{30}{31}\)

P=2014/2015=1-1/2015

mà 1/31>1/2015

nên S<P

Bình luận (1)