NT

\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + ... + \(\dfrac{2}{95.97}\)

DH
4 tháng 5 2022 lúc 21:06

\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + ..... + \(\dfrac{2}{95.97}\)

= 1 - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + .... + \(\dfrac{1}{95}\) - \(\dfrac{1}{97}\)

= \(1-\dfrac{1}{97}\) 

= \(\dfrac{96}{97}\)

Bình luận (0)
PN
4 tháng 5 2022 lúc 21:16

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{95\times97}\)

\(=\dfrac{2}{3}\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{95\times97}\right)\)

\(=\dfrac{2}{3}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)

\(=\dfrac{2}{3}\left(1-\dfrac{1}{97}\right)\)\(=\dfrac{2}{3}\times\dfrac{96}{97}\)\(=\dfrac{64}{97}\)

 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
HL
Xem chi tiết
HL
Xem chi tiết
VD
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
HN
Xem chi tiết