Những câu hỏi liên quan
VV
Xem chi tiết
PB
Xem chi tiết
CT
3 tháng 4 2017 lúc 4:08

Gọi độ dài 3 cạnh của tam giác thứ tự là a,b,c (a > 0; b > 0; c > 0).

Vì độ dài 3 cạnh tỉ lệ với 3, 4, 9 nên:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Suy ra: a + b = 3k + 4k = 7k < 9k (hay a + b < c)

Điều này mâu thuẫn (một cạnh tam giác bao giờ cũng nhỏ hơn tổng hai cạnh còn lại)

Vậy không có tam giác nào có 3 cạnh tỉ lệ 3;4;9.

Bình luận (0)
TS
Xem chi tiết
GT
Xem chi tiết
NT
18 tháng 12 2021 lúc 0:36

#include <iostream>
using namespace std;
int main()
{
    int a,b,c,kt;
    cout<<"Nhap a=";
    cin>>a;
    cout<<"Nhap b=";
    cin>>b;
    cout<<"Nhap c=";
    cin>>c;
    if ((a>0) and (b>0) and (c>0) and (a+b>c) and (a+c>b) and (b+c>a)) cout<<"Day la ba canh trong mot tam giac";
    else cout<<"Day khong la ba canh trong mot tam giac";
    return 0;
}

 

Bình luận (0)
HN
Xem chi tiết
SK
Xem chi tiết
TN
12 tháng 10 2017 lúc 8:31

Gọi độ dài 3 cạnh của tam giác thứ tự là a, b, c.

Theo đề bài ta có: a3=b4=c9a3=b4=c9

Đặt các tỉ số trên là k. Ta có:

a3=k⇒a=3ka3=k⇒a=3k

b4=k⇒b=4kb4=k⇒b=4k

c9=k⇒c=9kc9=k⇒c=9k

Suy ra: a + b = 3k + 4k = 7k < 9k

Điều này mâu thuẫn (một cạnh tam giác bao giờ cũng nhỏ hơn tổng hai cạnh còn lại).

Vậy không có tam giác nào có 3 cạnh tỉ lệ với 3; 4; 9.



Bình luận (0)
VL
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 5 2018 lúc 12:46

Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x 3 = y 5 = z 7

Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x 3 = y 5 = z 7 = x + y − z 3 − 5 + 7 = 20 5 = 4

Do đó x = 4.3 = 12

Vậy cạnh nhỏ nhất của tam giác là 12m

Đáp án cần chọn là B

Bình luận (0)
NC
Xem chi tiết
NT
19 tháng 11 2016 lúc 20:23

Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )

Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)

+) \(\frac{a}{5}=5\Rightarrow a=25\)

+) \(\frac{b}{4}=5\Rightarrow b=20\)

+) \(\frac{c}{3}=5\Rightarrow c=15\)

Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm

 

Bình luận (0)
KK
19 tháng 11 2016 lúc 20:12

Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)

Theo đề bài , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)

=> \(\frac{c+10}{7}=\frac{c}{5}\)

=> 5(c + 10) = 7c

=> 5c + 50 = 7c

=> 50 = 2c

=> c = 25

=> a + b = 25 + 10 = 35

Áp dụng tính chất dãy tỉ số , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)

=> a = 3.5 = 15

b = 4.5 = 20

Bình luận (0)
LT
19 tháng 11 2016 lúc 20:31

Gọi các cạnh lần lượt là a ; b ; c ta có a/3 = b/4=c/5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/3 = b/4 = c/5 = \(\frac{b+c-a}{4+5-3}\) = 10/6 cm =5/3 cm

từ đó suy ra :

a/3 = 5/3 cm\(\Rightarrow\) a = 5 cm

b/4 = 5/3 cm \(\Rightarrow\) b = 5/3cm*4=20/3cm

c/5 = 5/3 cm\(\Rightarrow\) c = 5/3 cm *5 =25/3 cm

Vậy a = 5 cm;b = 20/3 cm ; c = 25/3 cm

Bình luận (0)