Ôn tập toán 7

NC

Tam giác ABC có độ dài ba cạnh tỉ lệ với 3, 4, 5 và độ dài cạnh lớn nhất nhỏ hơn tổng độ dài hai cạnh còn lại là 10 cm. Hãy tính độ dài ba cạnh của tam giác ABC.

NT
19 tháng 11 2016 lúc 20:23

Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )

Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)

+) \(\frac{a}{5}=5\Rightarrow a=25\)

+) \(\frac{b}{4}=5\Rightarrow b=20\)

+) \(\frac{c}{3}=5\Rightarrow c=15\)

Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm

 

Bình luận (0)
KK
19 tháng 11 2016 lúc 20:12

Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)

Theo đề bài , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)

=> \(\frac{c+10}{7}=\frac{c}{5}\)

=> 5(c + 10) = 7c

=> 5c + 50 = 7c

=> 50 = 2c

=> c = 25

=> a + b = 25 + 10 = 35

Áp dụng tính chất dãy tỉ số , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)

=> a = 3.5 = 15

b = 4.5 = 20

Bình luận (0)
LT
19 tháng 11 2016 lúc 20:31

Gọi các cạnh lần lượt là a ; b ; c ta có a/3 = b/4=c/5

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/3 = b/4 = c/5 = \(\frac{b+c-a}{4+5-3}\) = 10/6 cm =5/3 cm

từ đó suy ra :

a/3 = 5/3 cm\(\Rightarrow\) a = 5 cm

b/4 = 5/3 cm \(\Rightarrow\) b = 5/3cm*4=20/3cm

c/5 = 5/3 cm\(\Rightarrow\) c = 5/3 cm *5 =25/3 cm

Vậy a = 5 cm;b = 20/3 cm ; c = 25/3 cm

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
NV
Xem chi tiết
CC
Xem chi tiết
H24
Xem chi tiết
CD
Xem chi tiết
BC
Xem chi tiết
ND
Xem chi tiết
VA
Xem chi tiết
LN
Xem chi tiết