Cho 2 số dương a,b và a+b=1. CMR:
\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\ge6\)
Cho 3 số thực dương a,b,c thỏa mãn : ab+bc+ca = 3. CMR\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\ge6\)
Cho các số thực dương a, b, c. CMR:
\(\dfrac{b+c+5}{a+1}+\dfrac{a+c+4}{b+2}+\dfrac{a+b+3}{c+3}\ge6\)
Lời giải:
Đặt biểu thức vế trái là $A$
Ta có:
\(A+3=\frac{b+c+5}{a+1}+1+\frac{a+c+4}{b+2}+1+\frac{a+b+3}{c+3}+1\)
\(=\frac{a+b+c+6}{a+1}+\frac{a+b+c+6}{b+2}+\frac{a+b+c+6}{c+3}\)
\(=(a+b+c+6)\left(\frac{1}{a+1}+\frac{1}{b+2}+\frac{1}{c+3}\right)\)
Áp dụng BĐT Cauchy-Schwarz hay (Svac-sơ) ta có:
\(\frac{1}{a+1}+\frac{1}{b+2}+\frac{1}{c+3}\geq \frac{9}{a+1+b+2+c+3}=\frac{9}{a+b+c+6}\)
\(\Rightarrow A+3\geq (a+b+c+6).\frac{9}{a+b+c+6}=9\Rightarrow A\geq 6\) (đpcm)
cho a,b >0 và a+b=1.cmr
\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\ge6\)
Ta có:
\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\)
Áp dụng bất đẳng thức:\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=\dfrac{4}{1^2}=4\) ( vì a + b = 1)
Áp dụng bất đẳng thức \(4xy\le\left(x+y\right)^2\) ta có:
\(4ab\le\left(a+b\right)^2=1^2=1\)
\(\Rightarrow\dfrac{2}{4ab}\ge\dfrac{2}{1}\)
\(\Rightarrow\dfrac{1}{2ab}\ge2\)
Khi đó:
\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge4+2=6\) (đpcm)
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = \(\dfrac{1}{2}\)
Cho các số thực dương a,b và c thoả mãn: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)\(\ge\dfrac{3}{2}\)
CMR: \(a+b+c\ge ab+bc+ca\)
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ
1) Cho a, b, c ∈ [0;1] và a + b + c = 2. CMR ab + bc + ca ≥ 2abc + \(\dfrac{20}{27}\)
2) Cho a, b, c ∈ [1;3] và a + b + c = 6. CMR a3 + b3 + c3 ≤ 36
3) Cho các số dương a, b, c, d thoả mãn a + b + c + d = 4. CMR \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+d^2}+\dfrac{d}{1+a^2}\) ≥ 2
1.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)
Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)
\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)
\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)
\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)
\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)
2.
Đặt \(\left(a;b;c\right)=\left(x+1;y+1;z+1\right)\Rightarrow\left\{{}\begin{matrix}x;y;z\in\left[0;2\right]\\x+y+z=3\end{matrix}\right.\)
Ta có: \(P=\left(x+1\right)^3+\left(y+1\right)^3+\left(z+1\right)^3\)
\(P=x^3+y^3+z^3+3\left(x^2+y^2+z^2\right)+12\)
Không mất tính tổng quát, giả sử \(x\ge y\ge z\Rightarrow x\ge1\)
\(\Rightarrow\left\{{}\begin{matrix}y^3+z^3=\left(y+z\right)^3-3yz\left(y+z\right)\le\left(y+z\right)^3\\y^2+z^2=\left(y+z\right)^2-2yz\le\left(y+z\right)^2\end{matrix}\right.\)
\(\Rightarrow P\le x^3+\left(3-x\right)^3+3x^2+3\left(3-x\right)^2+12\)
\(\Rightarrow P\le15x^2-45x+66=15\left(x-1\right)\left(x-2\right)+36\le36\)
(Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\))
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(1;2;3\right)\) và các hoán vị
Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca\ge3\) . CMR: \(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\le1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$
$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Cho \(a,b,c\) thỏa mãn \(\left|a\right|,\left|b\right|,\left|c\right|< 1\) và \(ab+bc+ca=2\). Chứng minh :
\(P=\dfrac{a^2}{1-b^2}+\dfrac{b^2}{1-c^2}+\dfrac{c^2}{1-a^2}\ge6\).
\(a^2+b^2+c^2\ge ab+bc+ca=2\)
Áp dụng BĐT C-S:
\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)
Đặt \(a^2+b^2+c^2=x\)
Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)
\(\Leftrightarrow x\ge2\) (đúng)
Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)
Cho các số thực dương thoả mãn:
\(\dfrac{1}{a+2}\) + \(\dfrac{1}{b+2}\)+ \(\dfrac{1}{c+2}\)\(\ge1\). CMR: \(a+b+c\ge ab+bc+ca\)
cho 3 số a,b,c dương và a+b+c=1.CMR
\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{15}{4}\)