Những câu hỏi liên quan
MP
Xem chi tiết
NG
1 tháng 4 2022 lúc 17:18

Câu 17.

undefined

Xét tam giác IHJ vuông tại H:

\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)

Chiết xuất: \(\dfrac{sini}{sinr}=n\)

\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{3}{4}\cdot\dfrac{60^2+HJ^2}{HJ^2}=\dfrac{16}{9}\Rightarrow HJ=51,25cm\)

Độ dài bóng của thành bể tạo ở đáy:

\(HJ+x=85,9cm\)

Chọn A

Bình luận (0)
MP
Xem chi tiết
NG
29 tháng 3 2022 lúc 20:25

Góc giới hạn phản xạ toàn phần:

\(sini_{gh}=\dfrac{n_2}{n_1}\)

\(\Rightarrow sini_{gh}=\dfrac{\dfrac{4}{3}}{\sqrt{3}}=\dfrac{4\sqrt{3}}{9}\)

\(\Rightarrow i_{gh}=50,2^o\)

Chọn A

Bình luận (0)
MP
Xem chi tiết
NG
29 tháng 3 2022 lúc 20:12

undefined

Xét \(\Delta HIJ\) vuông tại H:

\(sinr=\dfrac{HJ}{IJ}=\dfrac{HJ}{\sqrt{HI^2+HJ^2}}\)

\(\Rightarrow\dfrac{sini}{sinr}=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{HI^2+HJ^2}}{HJ}=n\)

\(\Rightarrow\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{60^2+HJ^2}}{HJ}=\dfrac{4}{3}\)

\(\Rightarrow HJ=51,25cm\)

Độ dài vệt sáng:

\(y=x+HJ=85,9cm\)

Chọn B

Bình luận (0)
TP
Xem chi tiết
NL
17 tháng 4 2022 lúc 21:47

38.

\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)

\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)

\(y\left(2\right)=-\dfrac{11}{3}\)

Phương trình d:

\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)

Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn

Bình luận (0)
NL
17 tháng 4 2022 lúc 21:54

39.

Gọi E là trung điểm AB, F là trung điểm CD

Từ E kẻ EH vuông góc SF (H thuộc SF)

Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)

\(\Rightarrow SE\perp CD\)

\(EF||AD\Rightarrow EF\perp CD\)

\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)

\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)

Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)

\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)

Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)

Bình luận (0)
NL
17 tháng 4 2022 lúc 21:55

Hình vẽ câu 39:

undefined

Bình luận (0)
MP
Xem chi tiết
NG
2 tháng 4 2022 lúc 18:54

Chiết suất tuyệt đối của kim cương:

Áp dụng công thức: \(n=\dfrac{c}{v}\)

\(\Rightarrow\)Tôc độ truyền ánh sáng trong kim cương:

\(v=\dfrac{c}{n}=\dfrac{3\cdot10^8}{2,42}=1,24\cdot10^8\)m/s=124000km/h

Chọn B.

Bình luận (0)
TP
Xem chi tiết
AM
15 tháng 5 2022 lúc 22:09

undefined

Bình luận (0)
AM
15 tháng 5 2022 lúc 22:14

undefined

Bình luận (0)
TP
Xem chi tiết
NL
14 tháng 4 2022 lúc 20:22

23.

Gọi M là trung điểm BC

Trong mp (SAM), từ A kẻ \(AH\perp SM\) (1)

Ta có: \(AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)

Lại có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp SH\)

(1);(2) \(\Rightarrow SH\perp\left(SBC\right)\)

\(\Rightarrow SH=d\left(A;\left(SBC\right)\right)\)

\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Hệ thức lượng trong tam giác vuông SAM:

\(AH=\dfrac{AM.SA}{\sqrt{AM^2+SA^2}}=\dfrac{a\sqrt{66}}{11}\)

undefined

Bình luận (0)
NL
14 tháng 4 2022 lúc 20:34

24.

Gọi D, E lần lượt là trung điểm BC, AC

\(\Rightarrow\) DE là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}DE\perp AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)

SBC đều \(\Rightarrow SD\perp BC\Rightarrow SD\perp\left(ABC\right)\)

\(\Rightarrow SD\perp AC\)

\(\Rightarrow AC\perp\left(SDE\right)\Rightarrow\widehat{SED}\) là góc giữa (SAC) và (ABC)

\(AB=BC.cos\widehat{ABC}=a.cos30^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow DE=\dfrac{1}{2}AB=\dfrac{a\sqrt{3}}{4}\)

\(SD=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(tan\varphi=tan\widehat{SED}=\dfrac{SD}{DE}=2\)

undefined

Bình luận (0)
TN
Xem chi tiết
MP
Xem chi tiết