Cho hình lăng trụ đứng đáy là hình vuông. Cạnh đáy = 2, đường cao = 3. M thuộc CD sao cho MC = 2MD. Tìm N trên C'D' để AM vuông góc với B'N
Cho hình lăng trụ đứng đáy là hình vuông. Cạnh đáy = 2, đường cao = 3. M thuộc CD sao cho MC = 2MD. Tìm N trên C'D' để AM vuông góc với B'N
Đặt \(\overrightarrow{C'N}=x.\overrightarrow{C'D'}\)
\(\overrightarrow{AM}=\overrightarrow{AD}+\overrightarrow{DM}=\overrightarrow{AD}+\dfrac{1}{3}\overrightarrow{DC}=\overrightarrow{A'D'}+\dfrac{1}{3}\overrightarrow{D'C'}\)
\(\overrightarrow{B'N}=\overrightarrow{B'C'}+\overrightarrow{C'N}=\overrightarrow{A'D'}+x.\overrightarrow{C'D'}\)
\(AM\perp B'N\Rightarrow\overrightarrow{AM}.\overrightarrow{B'N}=0\)
\(\Rightarrow\left(\overrightarrow{A'D'}-\dfrac{1}{3}\overrightarrow{C'D'}\right)\left(\overrightarrow{A'D'}+x.\overrightarrow{C'D'}\right)=0\)
\(\Leftrightarrow A'D'^2-\dfrac{1}{3}x.C'D'^2=0\) (do \(A'D'\perp C'D'\Rightarrow\overrightarrow{A'D'}.\overrightarrow{C'D'}=0\))
\(\Rightarrow4-\dfrac{4}{3}x=0\Rightarrow x=3\)
Vậy N là điểm trên C'D' thỏa mãn \(\overrightarrow{C'N}=3\overrightarrow{C'D'}\)
Cho hình chóp S. ABCD có SA vuông góc vs đáy và SA=a , đáy ABCD là hình thang vuông đường cao AB=a , BC=2a . Ngoài ra SC vuông góc BD . a ) Chứng minh ΔSBC vuông
b ) Tính theo a độ dài AD
c ) Gọi M là 1 điểm trên đoạn SA , đặt AM=x , vs 0≤x≤a . Tính độ dài đg cao DE của ΔBDM theo a và x . Xác định x để DE lớn nhất , nhỏ nhất
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)
\(\Rightarrow\Delta SBC\) vuông tại B
b. \(\left\{{}\begin{matrix}SA\perp BD\\BD\perp SC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp AC\)
\(\Rightarrow\widehat{BCA}=\widehat{ABD}\) (góc có cạnh tương ứng vuông góc)
\(\Rightarrow AD=AB.tan\widehat{ABD}=AB.\dfrac{AB}{BC}=\dfrac{a}{2}\)
c. Theo c/m câu a ta có \(BC\perp\left(SAB\right)\), mà \(AD||BC\Rightarrow AD\perp\left(SAB\right)\)
\(\Rightarrow AD\perp BM\)
Mà \(BM\perp DE\) (do DE là đường cao ứng với BM)
\(\Rightarrow BM\perp\left(ADE\right)\Rightarrow BM\perp AE\)
Áp dụng hệ thức lượng trong tam giác vuông ABM:
\(AE=\dfrac{AM.AB}{\sqrt{AM^2+AB^2}}=\dfrac{ax}{\sqrt{a^2+x^2}}\)
Pitago tam giác vuông ADE:
\(DE^2=AE^2+AD^2=\dfrac{a^2x^2}{a^2+x^2}+\dfrac{a^2}{4}\)
Do \(AD=\dfrac{a}{2}\) không đổi nên DE max, min tương ứng khi AE max, min
Hiển nhiên \(AE\ge0\Rightarrow AE_{min}=0\) khi \(x=0\) khi đó DE min
\(AE^2=\dfrac{a^2x^2}{a^2+x^2}\le\dfrac{a^2x^2}{2ax}=\dfrac{ax}{2}\le\dfrac{a^2}{2}\)
\(\Rightarrow AE_{max}\) khi \(x=3\)
7:
Gọi M la trung điểm của AC
Xét ΔADC co AF/AD=AM/AC
nên FM//DC và FM=1/2DC=a
Xét ΔCAB co CM/CA=CE/CB
nên EM//AB và EM=1/2AB=a
\(cos\left(AB;CD\right)=\left|cos\left(\overrightarrow{AB};\overrightarrow{CD}\right)\right|=\left|cos\left(\overrightarrow{ME};\overrightarrow{MF}\right)\right|\)
\(=\left|cosFME\right|\)
\(=\left|\dfrac{MF^2+ME^2-FE^2}{2\cdot MF\cdot ME}\right|=\left|\dfrac{a^2+a^2-3a^2}{2\cdot a\cdot a}\right|=\dfrac{1}{2}\)
=>cos(AB;CD)=60 độ
Giúp tớ vsss
Cho hình chóp S.ABCD có đáy ABC là tam giác vuông cân tại B, SA vuông góc (ABC). Kẻ AH,AK lần lượt vuông góc với SB , SC tại H và K, có SA=AB=a. 1, chứng minh tam giác SBC vuông 2, chứng minh tam giác AHK vuông và tính diện tích tam giác AHK. 3, tính góc giữa AK và (SBC). Giúp mình với
1: CB vuông góc AB
SA vuông góc BC
=>BC vuông góc (SAB)
=>BC vuông góc SB
=>ΔSBC vuông tại B
b: BC vuông góc AH
SB vuông góc AH
=>AH vuông góc (SBC)
=>AH vuông góc HK
=>ΔAHK vuông tại H
Câu 1: Cho tứ diện ABCD có hai mặt ABC và ABD là hai tam giác đều.
a. Chứng minh rằng AB và CD vuông góc với nhau.
b. Gọi M, N, P, P, Q lần lượt là trung điểm của các cạnh AC, BC, BD, DA. Chứng minh rằng tứ giác MNPQ là hình chữ nhật
giúp mk vs ạ!!!
a: Gọi E là trung điểm của AB
ΔABC đều nên CE vuông góc AB
ΔABD đều nên DE vuông góc AB
=>AB vuông góc (CDE)
=>AB vuông góc CD
b: Xét ΔCAB có CN/CB=CM/CA
nên MN//AB và MN=1/2AB
Xét ΔDAB có DQ/DA=DP/DB
nên PQ//AB và PQ/AB=DQ/DA=1/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔADC có AQ/AD=AM/AC
nên QM//DC
=>QM vuông góc AB
=>QM vuông góc QP
=>MNPQ là hình chữ nhật
Giúp e giải chi tiết và vẽ hình câu 38 đến 40 đi ạ
38.
\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)
\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)
\(y\left(2\right)=-\dfrac{11}{3}\)
Phương trình d:
\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)
Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn
39.
Gọi E là trung điểm AB, F là trung điểm CD
Từ E kẻ EH vuông góc SF (H thuộc SF)
Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)
\(\Rightarrow SE\perp CD\)
\(EF||AD\Rightarrow EF\perp CD\)
\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)
\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)
Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)
\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)
Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)
Giúp e giải chi tiết câu 35 đến 37 đi ạ
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}\)
\(=\dfrac{6}{2\left(4+4\right)}=\dfrac{3}{8}\)
\(f\left(3\right)=1-2m\)
Hàm liên tục trên R khi:
\(1-2m=\dfrac{3}{8}\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)
Giúp e giải câu 24 25 26 chi tiết đi ạ
24.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
25.
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABC\right)\Rightarrow\widehat{SAO}\) là góc giữa SA và (ABC)
\(AO=\dfrac{2}{3}.\dfrac{1.\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow cos\widehat{SAO}=\dfrac{AO}{SA}=\dfrac{1}{2}\Rightarrow\widehat{SAO}=60^0\)
26.
\(dy=y'dx=\left(x^2\right)'dx=2xdx\)
Giúp em giải câu 24 chi tiết tại sao câu đó sao và các câu còn lại đúng đi ạ
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\) (A đúng)
\(AC\perp BD\) theo tính chất của hình vuông (2 đường chéo vuông góc) (B đúng)
\(SA\perp CD\) theo cmt (C đúng)
Do đó D sai