\(\dfrac{9}{y+4}=\dfrac{72}{160}\)
Chọn câu trả lời đúng.
Phân số nào đưới đây có mẫu số là 72 và bằng \(\dfrac{2}{9}\)?
A. \(\dfrac{18}{72}\) B. \(\dfrac{4}{18}\) C. \(\dfrac{16}{72}\) D. \(\dfrac{14}{72}\)
Tính: (\(\sqrt[3]{\dfrac{1}{9}}+4\sqrt[3]{\dfrac{1}{72}}-\sqrt[3]{4}\) )(\(\sqrt[3]{72}+\sqrt[3]{96}+\sqrt[3]{128}\))
\(\left(\sqrt[3]{\dfrac{1}{9}}+4\cdot\sqrt[3]{\dfrac{1}{72}}-\sqrt[3]{4}\right)\left(\sqrt[3]{72}+\sqrt[3]{96}+\sqrt[3]{128}\right)\)
\(=\left(\dfrac{1}{3}\cdot\sqrt[3]{3}+4\cdot\dfrac{1}{6}\cdot\sqrt[3]{3}-2\sqrt[3]{\dfrac{1}{2}}\right)\left(2\sqrt[3]{9}+2\sqrt[3]{12}+4\sqrt[3]{2}\right)\)
\(=\left(\sqrt[3]{3}-2\sqrt[3]{\dfrac{1}{2}}\right)\left(6\sqrt[3]{3}+2\sqrt[3]{12}+4\sqrt[3]{2}\right)\)
\(=6\cdot3+2\sqrt[3]{36}+4\sqrt[3]{6}-12\sqrt[3]{\dfrac{3}{2}}-4\sqrt[3]{6}-8\)
\(=10+12\sqrt[3]{\dfrac{1}{6}}-6\sqrt[3]{12}\)
Tính:
a) \(\dfrac{12}{17}:6\); \(16:\dfrac{8}{11}\); \(9:\dfrac{3}{5}\times\dfrac{4}{15}\)
b) \(72:45\) \(281,6:8\) \(300,72:53,7\)
\(15:50\) \(912,8:28\) \(0,162:0,36\)
a, 1. \(\dfrac{2}{17}\)
2. \(22\)
3. 4
b,
1. \(\dfrac{8}{5}\)
2. \(\dfrac{176}{5}\)
3. \(\dfrac{28}{5}\)
4. \(\dfrac{3}{10}\)
5. \(\dfrac{163}{5}\)
6. \(\dfrac{9}{20}\)
a) \(\dfrac{12}{17}:6=\dfrac{12}{17}\cdot\dfrac{1}{6}=\dfrac{2}{17}\)
a) \(16:\dfrac{8}{11}=16\cdot\dfrac{11}{8}=22\)
Ôn tập lain kiến thức lớp bốn:)
\(\dfrac{1}{24}x\dfrac{72}{23}+\dfrac{1}{46}\). \(\dfrac{9}{11}+\dfrac{1}{12}:\dfrac{11}{24}\). \(\dfrac{4}{7}-\dfrac{1}{5}x\dfrac{5}{9}\)
Một mảnh đất hình thoi có tổng độ dai hai đường chéo là 180m . Đường chéo thứ nhất hơn đường chéo thứ hai là 24m. TÍNH DIỆN TÍCH MẢNH ĐẤT HÌNH THOI ĐÓ .
AI NHỚ KIẾN THỨC SSEN XUON DƯỚI NHÉ
3/23 + 1/46 = 7/46
9/11 + 2/11 = 11/11 = 1
4/7 - 1/9 = 29/63
1/24 x 72/23 +1/46=7/46
9/11 +1/12 :11/24=1
4/5-1/5x5/9=29/63
giải
đường chéo T1 là
(180+24):2=102(m2)
đường chéo T2 là
180-102=78(m2)
diệnt ích mảnh đất là
\(\dfrac{102x78}{2}=3978\left(m^2\right)\)
So sánh:
a) \(\dfrac{-11}{12};\dfrac{17}{-18}\)
b) \(\dfrac{-14}{-21};\dfrac{-60}{-72}\)
c) \(\dfrac{2135}{13790};\dfrac{4}{3}\)
d) \(\dfrac{2022}{2021};\dfrac{10}{9}\)
e) \(\dfrac{35}{36};\dfrac{16}{17}\)
f) -1,3; -1,2
giúp mình với, mình cảm ơn
\(a)\dfrac{-11}{12}và\dfrac{17}{-18}\) \(\Leftrightarrow\dfrac{-11}{12}và\dfrac{-17}{18}\) \(\Leftrightarrow\dfrac{-33}{36}và\dfrac{-34}{36}\)
Ta thấy rằng : \(-33>-34\Rightarrow\dfrac{-33}{36}>\dfrac{-34}{36}\)
Hay : \(\dfrac{-11}{12}>\dfrac{17}{-18}\)
\(b)\dfrac{-14}{-21}và\dfrac{-60}{-72}\)
Ta có : \(\dfrac{-14}{-21}\text{=}\dfrac{-14:-7}{-21:-7}\text{=}\dfrac{2}{3}\text{=}\dfrac{4}{6}\)
\(\dfrac{-60}{-72}\text{=}\dfrac{-60:-12}{-72:-12}=\dfrac{5}{6}\)
Do đó : \(\dfrac{-14}{-21}< \dfrac{-60}{-72}\)
\(c)\dfrac{2135}{13790}và\dfrac{4}{3}\)
Xét phân số : \(\dfrac{2135}{13790}\) ta thấy rằng : \(tử< mẫu\left(2135< 13790\right)\)
\(\Rightarrow\dfrac{2135}{13790}< 1\)
Xét phân số : \(\dfrac{4}{3}có\) : \(tử>mẫu\left(4>3\right)\)
\(\Rightarrow\dfrac{4}{3}>1\)
Do đó : \(\dfrac{2135}{13790}< \dfrac{4}{3}\)
\(d)\dfrac{2022}{2021}và\dfrac{10}{9}\)
Ta thấy rằng : \(\dfrac{2022}{2021}-\dfrac{1}{2021}\text{=}1\)
\(\dfrac{10}{9}-\dfrac{1}{9}\text{=}1\)
Mà : \(\dfrac{1}{9}>\dfrac{1}{2021}\)
\(\Rightarrow\dfrac{2022}{2021}< \dfrac{10}{9}\)
\(e)\dfrac{35}{36}và\dfrac{16}{17}\)
Ta có : \(\dfrac{35}{36}+\dfrac{1}{36}\text{=}1\)
\(\dfrac{16}{17}+\dfrac{1}{17}\text{=}1\)
Mà : \(\dfrac{1}{36}< \dfrac{1}{17}\)
\(\Rightarrow\dfrac{35}{36}>\dfrac{16}{17}\)
\(f)-1,3< -1,2\)
a) Ta có:
\(-\dfrac{11}{12}=\dfrac{1}{12}-1\)
\(-\dfrac{17}{18}=\dfrac{1}{18}-1\)
Mà: \(\dfrac{1}{12}>\dfrac{1}{18}\)
Hay: \(\dfrac{1}{12}-1>\dfrac{1}{18}-1\Rightarrow-\dfrac{11}{12}>-\dfrac{17}{18}\)
b) Ta có:
\(\dfrac{-14}{-21}=\dfrac{2}{3}=\dfrac{4}{6}\)
\(\dfrac{-60}{-72}=\dfrac{5}{6}\)
Mà: \(5>4\Rightarrow\dfrac{-60}{-72}>\dfrac{-14}{-21}\)
c) Ta có:
\(\dfrac{2135}{13790}=\dfrac{61}{394}< 1\) (tử nhỏ hơn mẫu)
\(\dfrac{4}{3}>1\) (tử lớn hơn mẫu)
Ta có: \(\dfrac{61}{394}< \dfrac{4}{3}\Rightarrow\dfrac{2135}{13790}< \dfrac{4}{3}\)
d) Ta có:
\(\dfrac{2022}{2021}=\dfrac{1}{2021}+1\)
\(\dfrac{10}{9}=\dfrac{1}{9}+1\)
Ta thấy: \(\dfrac{1}{2021}< \dfrac{1}{9}\Rightarrow\dfrac{1}{2021}+1< \dfrac{1}{9}+1\)
Hay \(\dfrac{2022}{2021}< \dfrac{10}{9}\)
e) Ta có:
\(\dfrac{35}{36}=1-\dfrac{1}{36}\)
\(\dfrac{16}{17}=1-\dfrac{1}{17}\)
Ta có: \(\dfrac{1}{36}< \dfrac{1}{17}\Rightarrow1-\dfrac{1}{36}>1-\dfrac{1}{17}\)
Hay \(\dfrac{35}{36}>\dfrac{16}{17}\)
f) Ta có: \(1,3>1,2\)
\(\Rightarrow-1,3< -1,2\)
\(\dfrac{x}{12}+\dfrac{y}{13}+\dfrac{z}{15}\) và \(x+y+z=160\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{12}=\dfrac{y}{13}=\dfrac{z}{15}=\dfrac{x+y+z}{12+13+15}=\dfrac{160}{40}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.12=48\\y=4.13=52\\z=4.15=60\end{matrix}\right.\)
Tính nhanh:
a, \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
b, \(\left(-\dfrac{1}{4}+\dfrac{7}{35}-\dfrac{5}{3}\right)-\left(-\dfrac{15}{12}+\dfrac{6}{11}-\dfrac{48}{49}\right)\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
Tìm x,y,z thỏa mãn:
\(\dfrac{x+2}{3}\)=\(\dfrac{y-5}{-4}\)=\(\dfrac{z+1}{5}\); 2x-3y+z=72 giúp tui với huhu
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\Rightarrow\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}=\dfrac{2x+4-3y+15+z+1}{6-\left(-12\right)+5}=\dfrac{\left(2x-3y+z\right)+\left(4+15+1\right)}{23}=\dfrac{72+20}{23}=\dfrac{92}{23}=4\)
\(\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\\ \dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\\ \dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2x-3y+z+4+15+1}{2\cdot3-3\cdot\left(-4\right)+5}=\dfrac{92}{23}=4\)
Do đó: x=10; y=-11; z=4
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\text{ và }2x-3y+z=72\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2\left(x+2\right)-3\left(y-5\right)+z+1}{2.3-3.\left(-4\right)+5}=\dfrac{92}{23}=4\)
\(\Rightarrow\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\)
\(\dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\)
\(\dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
a) A= \(\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
b) B=\(\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)
c) C=\(\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-......-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=1-1+\dfrac{1}{72}\)
\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)
\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)
\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)
\(=-\left(-\dfrac{173}{1287}\right)\)
\(=\dfrac{173}{1287}\)
c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{-49}{50}\)