Bài 9: Căn bậc ba

BK

Tính: (\(\sqrt[3]{\dfrac{1}{9}}+4\sqrt[3]{\dfrac{1}{72}}-\sqrt[3]{4}\) )(\(\sqrt[3]{72}+\sqrt[3]{96}+\sqrt[3]{128}\))

NT
28 tháng 10 2023 lúc 10:47

\(\left(\sqrt[3]{\dfrac{1}{9}}+4\cdot\sqrt[3]{\dfrac{1}{72}}-\sqrt[3]{4}\right)\left(\sqrt[3]{72}+\sqrt[3]{96}+\sqrt[3]{128}\right)\)

\(=\left(\dfrac{1}{3}\cdot\sqrt[3]{3}+4\cdot\dfrac{1}{6}\cdot\sqrt[3]{3}-2\sqrt[3]{\dfrac{1}{2}}\right)\left(2\sqrt[3]{9}+2\sqrt[3]{12}+4\sqrt[3]{2}\right)\)

\(=\left(\sqrt[3]{3}-2\sqrt[3]{\dfrac{1}{2}}\right)\left(6\sqrt[3]{3}+2\sqrt[3]{12}+4\sqrt[3]{2}\right)\)

\(=6\cdot3+2\sqrt[3]{36}+4\sqrt[3]{6}-12\sqrt[3]{\dfrac{3}{2}}-4\sqrt[3]{6}-8\)

\(=10+12\sqrt[3]{\dfrac{1}{6}}-6\sqrt[3]{12}\)

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
H24
Xem chi tiết
TG
Xem chi tiết
KP
Xem chi tiết
TN
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
BY
Xem chi tiết