Gọi S là tập nghiệm của bất phương trình \(\dfrac{x^2+x+3}{x^2-4}\ge1\) . Khi đó S \(\cap\left(-2;2\right)\) là tập nghiệm nào
Tập nghiệm của bất pt
a) \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
b) Gọi S là nghiệm của bất pt \(\dfrac{x^2+x+3}{x^2-4}\ge1\). Khi đó \(S\cap\left(-2;2\right)\) là tập nào
a, \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
⇔ \(\dfrac{\left(x-2\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)
⇔ \(\dfrac{3-6x}{\left(x+1\right)\left(x-2\right)}\) ≥ 0
⇔ \(\dfrac{2x-1}{\left(x+1\right)\left(x-2\right)}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\-1< x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le x< 2\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(\left(-\infty;-1\right)\cup\) \(\left[\dfrac{1}{2};2\right]\)\ {2}
Bạn có thể biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn
Còn vì sao mình không biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn thì đó là một câu chuyện dài
b, tương tự, chuyển vế đổi dấu
Tập nghiệm của bất phương trình \(\left|x+1\right|\)<x là:
A. \(S=\left(\dfrac{1}{2};+\infty\right)\) B. \(S=\left(0;\dfrac{1}{2}\right)\) C. \(S=\varnothing\) D. \(S=\left(-\infty;-\dfrac{1}{2}\right)\)
Gọi S là tập hợp các giá trị nguyên của tham số m để bất phương trình \(\dfrac{x^2-2x+4}{x^2-\left(3m+2\right)x+4}>0\) nghiệm đúng với mọi x. Tìm số phần tử của S.
A. 0 B. 5 C. 2 D. 3
( HEPL ME! )
Do \(x^2-2x+4=\left(x-1\right)^2+3>0;\forall x\) nên BPT đã cho nghiệm đúng với mọi x khi và chỉ khi:
\(x^2-\left(3m+2\right)x+4>0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta=\left(3m+2\right)^2-16< 0\end{matrix}\right.\)
\(\Leftrightarrow9m^2+12m-12< 0\)
\(\Rightarrow-2< m< \dfrac{2}{3}\)
\(\Rightarrow m=\left\{-1;0\right\}\) có 2 giá trị
Cho S là tập hợp tất cả caccs giá trị nguyên của tham ssos m sao cho bất phương trình \(\dfrac{(m+1)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(2m+1\right)x+m}\le1\) có tập nghiệm là R . Tính số phần tử của tập hợp S
Tìm tập xách định của bất phương trình
\(\dfrac{2x}{\left|x+1\right|-3}-\dfrac{1}{\sqrt{2-x}}\ge1\)
gọi S là tập nghiệm của bất phương trình \(x^2-\left(2m-6\right)x+m^2-6m+5\le0\). tìm tất cả các giá trị của m sao cho (3;5) \(\subset\) S.
=>x^2-[(m-1)+(m-5)]x+m^2-6m+5<=0
=>x(x-m+1)-(m-5)(x-m+1)<=0
=>(x-m+1)(x-m+5)<=0
=>m-5<=x<=m-1
=>S=[m-5;m-1]
(3;5) là tập con của S
=>m-5>=3 và m-1<=5
=>m>=8 và m<=6
=>Loại
Ký hiệu S là tập hợp nghiệm của bất phương trình \(x^2-\left(8m+1\right)x+15m^2+3m\le0\). Tìm điều kiện của m để khi biểu diễn trên trục số, độ dài của S lớn hơn 3
Ta có :
\(x^2-(8m+1)x+15m^2+3m\leq 0 \\ \Leftrightarrow (x-3m)(x-5m-1) \leq 0\\ \Leftrightarrow x\in [3m;5m-1] \ hoặc \ x\in[5m-1;3m] \)
Độ dài của S trên trục số là:
\(|5m-1-3m|>3 \\ \Leftrightarrow |2m-1| > 3 \\ \Leftrightarrow 2m-1 > 3 \ hoặc \ 2m-1 <-3\\\Leftrightarrow m>2 \ hoặc\ m<-1\)
Gọi S là tập tất cả các giá trị của m để bất phương trình m x 2 + 6 < x + m nghiệm đúng với mọi giá trị thực của x. Khi đó, tập S là
A. S = − ∞ ; − 1 .
B. S = − ∞ ; 1 .
C. S = − ∞ ; − 30 5 .
D. S = − ∞ ; 30 5 .
Câu 1: [1] Gọi S là tập nghiệm của phương trình ( x+2)(2x-1)(x-3) = 0. Khẳng định nào sau đây sai?
A. -2 ∈ S B. 3 ∈ S C. 2 ∈ S D. \(\dfrac{1}{2}\) ∈ S
Ta có tập nghiệm của phương trình là:
\(\left(x+2\right)\left(2x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Tập hợp S là:
\(S=\left\{-2;\dfrac{1}{2};3\right\}\)
Lần lược các phương án:
A. \(-2\in S\) (đúng)
B. \(3\in S\) (đúng)
C. \(2\in S\) (Sai)
D. \(\dfrac{1}{2}\in S\) (Đúng)
⇒ Chọn C