Giải bất phương trình
\(\sqrt{x^2+2x-3}\le\sqrt{2x^2-3x+1}\)
Giải bất phương trình: \(3\left(x-2\right)+\sqrt{3x-4}< 3\sqrt{2x+1}+\sqrt{x-3}\)
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ
a) Giải bất phương trình:
\(\sqrt{x^2+2x}+\sqrt{x^2+3x}\) ≥ \(2x\)
b) Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+6x^2y+9xy^2+y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{matrix}\right.\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
\(\left(x-2\right)\sqrt{x^2-2x-3}\le x^2-4\)
Giải bất phương trình
Em 2k8 k biết làm có đúng k
ĐKXĐ : \(\left[{}\begin{matrix}x\le-1\\x\ge3\end{matrix}\right.\)
Bpt \(\Leftrightarrow\left(x-2\right)\left[x+2-\sqrt{x^2-2x-3}\right]\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2;x+2\ge\sqrt{x^2-2x-3}\left(1\right)\\x\le2;x+2\le\sqrt{x^2-2x-3}\left(2\right)\end{matrix}\right.\)
(1) có : \(x+2\ge\sqrt{x^2-2x-3}\Leftrightarrow\left(x+2\right)^2\ge x^2-2x-3\)
\(\Leftrightarrow6x+7\ge0\) (Đ với \(x\ge2\) )
(2) có : \(\sqrt{x^2-2x-3}\ge x+2\)
TH1 : x + 2 < 0 <=> \(x< -2\) ( Bpt luôn đúng )
TH2 : \(x+2\ge0\) ; Bp 2 vế rút gọn được : \(6x+7\le0\Leftrightarrow x\le\dfrac{-7}{6}\)
Khi đó : \(-2\le x\le\dfrac{-7}{6}\)
Vậy ...
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
\(\sqrt[3]{2x^2+1}>\sqrt[3]{3x^2-1}\) giải bất phương trình
\(\sqrt[3]{2x^2+1}>\sqrt[3]{3x^2-1}\)
\(\Leftrightarrow2x^2+1>3x^2-1\)
\(\Leftrightarrow x^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)
Giải các bất phương trình sau:
a) \(\sqrt{2-|x-2|}>x-2\)
b) \(x^2+3x+2\geq 2\sqrt{x^2+3x+5}\)
c) \(4\sqrt{x}+\frac{2}{\sqrt{x}}<2x+\frac{1}{2x}+2\)
Giải bất phương trình: \((x+2).\sqrt{(3x+3)-2\sqrt{x+1}}+\sqrt{2x^2+5x+3}\ge1\)