Em 2k8 k biết làm có đúng k
ĐKXĐ : \(\left[{}\begin{matrix}x\le-1\\x\ge3\end{matrix}\right.\)
Bpt \(\Leftrightarrow\left(x-2\right)\left[x+2-\sqrt{x^2-2x-3}\right]\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2;x+2\ge\sqrt{x^2-2x-3}\left(1\right)\\x\le2;x+2\le\sqrt{x^2-2x-3}\left(2\right)\end{matrix}\right.\)
(1) có : \(x+2\ge\sqrt{x^2-2x-3}\Leftrightarrow\left(x+2\right)^2\ge x^2-2x-3\)
\(\Leftrightarrow6x+7\ge0\) (Đ với \(x\ge2\) )
(2) có : \(\sqrt{x^2-2x-3}\ge x+2\)
TH1 : x + 2 < 0 <=> \(x< -2\) ( Bpt luôn đúng )
TH2 : \(x+2\ge0\) ; Bp 2 vế rút gọn được : \(6x+7\le0\Leftrightarrow x\le\dfrac{-7}{6}\)
Khi đó : \(-2\le x\le\dfrac{-7}{6}\)
Vậy ...
Đúng 5
Bình luận (0)