Những câu hỏi liên quan
NM
Xem chi tiết
NL
1 tháng 7 2019 lúc 13:03

\(P=a+\frac{1}{a}=\frac{a}{2005^2}+\frac{1}{a}+\left(1-\frac{1}{2005^2}\right)a\)

\(P\ge2\sqrt{\frac{a}{2005^2}.\frac{1}{a}}+\left(1-\frac{1}{2005^2}\right).2005=\frac{1}{2005}+2005\)

Dấu "=" xảy ra khi \(a=2005\)

\(P=a+b+\frac{1}{2a}+\frac{2}{b}=\frac{a}{2}+\frac{1}{2a}+\frac{b}{2}+\frac{2}{b}+\frac{1}{2}\left(a+b\right)\)

\(P\ge2\sqrt{\frac{a}{2}.\frac{1}{2a}}+2\sqrt{\frac{b}{2}.\frac{2}{b}}+\frac{1}{2}.3=\frac{9}{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Câu cuối đề sai, bạn nhìn hai số hạng cuối cùng

Bình luận (0)
NT
Xem chi tiết
NT
12 tháng 4 2020 lúc 10:11

Câu 3 là (1+1/x)(1+1/y) nha

Mà ko cần làm câu này đâu giúp mình 2 câu 1 và 2 thôi nhá

Bình luận (0)
NL
12 tháng 4 2020 lúc 15:26

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)

Bình luận (0)
NL
12 tháng 4 2020 lúc 15:29

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

Bình luận (0)
DF
Xem chi tiết
AH
2 tháng 1 2021 lúc 13:46

Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.

Bình luận (0)
CD
Xem chi tiết
Y
13 tháng 6 2019 lúc 10:58

\(T=21x+\frac{21}{y}+3y+\frac{3}{x}\)

\(=\frac{x}{3}+\frac{3}{x}+\frac{21}{y}+\frac{7y}{3}+\frac{62x}{3}+\frac{2y}{3}\)

\(\ge2\sqrt{\frac{x}{3}\cdot\frac{3}{x}}+2\sqrt{\frac{21}{y}\cdot\frac{7y}{3}}+\frac{62\cdot3}{3}+\frac{2\cdot3}{3}\)

\(=2+14+62+2=80\)

\(T=80\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=\frac{3}{x}\\\frac{21}{y}=\frac{7y}{3}\\x=3\\y=3\end{matrix}\right.\Leftrightarrow x=y=3\)

Bình luận (0)
KB
13 tháng 7 2020 lúc 15:29

Mình chưa hiểu lắm chỗ dòng 3 \(\frac{62.3}{3}+\frac{2.3}{3}\) còn x với y ở trên đi đâu mất rồi?

Bình luận (0)
BL
Xem chi tiết
TB
Xem chi tiết
HN
7 tháng 8 2016 lúc 20:01

Ta có : \(M=\frac{x^2+16}{x+3}=\frac{\left(x^2+6x+9\right)-6\left(x+3\right)+25}{x+3}=\frac{\left(x+3\right)^2-6\left(x+3\right)+25}{x+3}\)

\(=\left(x+3\right)+\frac{25}{x+3}-6=t+\frac{25}{t}-6\)với \(t=x+3>0\)

Áp dụng bđt Cauchy : \(t+\frac{25}{t}\ge2\sqrt{t.\frac{25}{t}}=10\Rightarrow M\ge4\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}t>0\\t=\frac{25}{t}\end{cases}\Leftrightarrow}t=5\Leftrightarrow x=2\)

Vậy M đạt giá trị nhỏ nhất bằng 4 tại x = 2

Bình luận (0)
TQ
Xem chi tiết
TM
23 tháng 2 2020 lúc 10:00

Áp dụng bđt Cauchy cho 2 số dương:

\(A=x+\frac{1}{x}=\frac{8x}{9}+\frac{x}{9}+\frac{1}{x}\ge\frac{8.3}{9}+2\sqrt{\frac{x}{9}.\frac{1}{x}}=\frac{10}{3}\)

Dấu "=" xảy ra khi x=3

Bình luận (0)
 Khách vãng lai đã xóa
DN
23 tháng 2 2020 lúc 10:02

\(A=\left(\frac{x}{9}+\frac{1}{x}\right)+\frac{8}{9}x\)

\(\ge2\sqrt{\frac{x}{9}.\frac{1}{x}}+\frac{8}{9}\times3\) \(=2\times\frac{1}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{9}=\frac{1}{x}\Leftrightarrow x=3\left(tmđk\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
YM
23 tháng 2 2020 lúc 10:11

Ta có A = \(x+\)\(\frac{1}{x}\)
             = \(\frac{x^2+1}{x}\)  
             = \(\frac{x^2-2x+1+2x}{x}\)
             = \(\frac{\left(x-1\right)^2+2x}{x}\)
             = \(\frac{\left(x-1\right)^2}{x}+2\)
=> Để A nhỏ nhất <=> \(\frac{\left(x-1\right)^2}{x}\) nhỏ nhất <=> x nhỏ nhất 
Mà x\(\ge\) 3 => x=3
Vậy GTLN của A = \(\frac{10}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
XX
Xem chi tiết
NL
20 tháng 5 2021 lúc 5:45

\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)\ge4\sqrt[4]{\dfrac{a^4.256^3.\left(b-1\right)^3}{81^3\left(b-1\right)^3}}=\dfrac{256a}{27}\)

\(\dfrac{b^4}{\left(a-1\right)^3}+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)\ge\dfrac{256b}{27}\)

Cộng vế với vế: 

\(P+\dfrac{256}{27}\left(a+b\right)-\dfrac{512}{27}\ge\dfrac{256}{27}\left(a+b\right)\)

\(\Rightarrow P\ge\dfrac{512}{27}\)

Dấu "=" xảy ra khi \(a=b=4\)

Bình luận (0)
LA
Xem chi tiết
TT
11 tháng 6 2018 lúc 12:11

Lớp 8 ?? :D ?? 
Lớp 8 có căn bậc 2 ?? :D ??
Lớp 9 má êyy

Bình luận (0)