Violympic toán 9

NT

1, Cho x,y≥0 thỏa mãn 2x+3y=1 Tìm GTLN, GTNN của A=x^2+3y^2

2, Cho x^2+y^2=52 Tìm GTLN, GTNN của A=2x+3y+4

3, Cho x,y>0và x+y=1 Tìm GTNN của A=(1+1x )/(1+1y )

NT
12 tháng 4 2020 lúc 10:11

Câu 3 là (1+1/x)(1+1/y) nha

Mà ko cần làm câu này đâu giúp mình 2 câu 1 và 2 thôi nhá

Bình luận (0)
NL
12 tháng 4 2020 lúc 15:26

\(2x+3y=1\Rightarrow y=\frac{1-2x}{3}\)

Do \(x;y\ge0\Rightarrow0\le x\le\frac{1}{2}\)

\(A=x^2+3\left(\frac{1-2x}{3}\right)^2=x^2+\frac{1}{3}\left(4x^2-4x+1\right)=\frac{7}{3}x^2-\frac{4}{3}x+\frac{1}{3}\)

\(A=\frac{7}{3}\left(x-\frac{2}{7}\right)^2+\frac{1}{7}\ge\frac{1}{7}\)

\(\Rightarrow A_{min}=\frac{1}{7}\) khi \(x=\frac{2}{7};y=\frac{1}{7}\)

Mặt khác \(A=\frac{1}{3}x\left(7x-4\right)+\frac{1}{3}\)

Do \(x\le\frac{1}{2}\Rightarrow7x-4< 0\Rightarrow x\left(7x-4\right)\le0\)

\(\Rightarrow A\le\frac{1}{3}\Rightarrow A_{max}=\frac{1}{3}\) khi \(x=0;y=\frac{1}{3}\)

Bình luận (0)
NL
12 tháng 4 2020 lúc 15:29

Câu 2:

\(A-4=2x+3y\Rightarrow\left(A-4\right)^2=\left(2x+3y\right)^2\)

\(\left(A-4\right)^2\le\left(2^2+3^2\right)\left(x^2+y^2\right)=676\)

\(\Rightarrow-26\le A-4\le26\)

\(\Rightarrow-22\le A\le30\)

\(A_{max}=30\) khi \(\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

\(A_{min}=-22\) khi \(\left\{{}\begin{matrix}x=-4\\y=-6\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
DF
Xem chi tiết
BA
Xem chi tiết
TT
Xem chi tiết
DF
Xem chi tiết
DC
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết