Những câu hỏi liên quan
LN
Xem chi tiết
NA
29 tháng 2 2020 lúc 7:54

\(a, x(x+3)-(2x-1)(x+3)=0\)

\(⇔(x+3)(1-x)=0\)

\(⇔\left[\begin{array}{} x+3=0\\ 1-x=0 \end{array}\right.\)

\(⇔\left[\begin{array}{} x=-3\\ x=1 \end{array}\right.\)

Vậy phương trình có tập nghiệm là S={\(-3; 1\)}

\(b, 3x-5(x+2)=3(4-2x)\)

\(⇔3x-5x-10=12-6x\)

\(⇔3x-5x+6x=12+10\)

\(⇔4x=22\)

\(⇔x=\dfrac{22}{4}\)

Vậy pt có 1 nghiệm là \(x=\dfrac{22}{4}\)

\(c, (4x-3)(5x-6)=(4x-3)(2x-3)\)

\(⇔5x-6=2x-3\)

\(⇔5x-2x=-3+6\)

\(⇔3x=3\)

\(⇔x=1\)

Vậy pt có 1 nghiệm là \(x=1\)

Bình luận (1)
 Khách vãng lai đã xóa
NM
Xem chi tiết
TT
2 tháng 9 2020 lúc 15:24

\(ĐKXĐ:x\ge\frac{1}{2}\)

Phương trình đã cho tương đương :

\(4.\left(x^2+1\right)+3.x.\left(x-2\right).\sqrt{2x-1}=2x^3+10x\)

\(\Leftrightarrow3x\left(x-2\right)\sqrt{2x-1}=2x^3-8x^2+10x-4\)

\(\Leftrightarrow3x.\left(x-2\right).\sqrt{2x-1}=2.\left(x-2\right).\left(x-1\right)^2\) (1)

Dễ thấy \(x=2\) là một nghiệm của (1). Xét \(x\ne2\). Khi đó ta có :

\(3x.\sqrt{2x-1}=2.\left(x-1\right)^2\)(*)

Đặt \(\sqrt{2x-1}=a\left(a\ge0\right)\Rightarrow-a^2=1-2x\)

Khi đó pt (*) có dạng :

\(3x.a=2.\left(x^2-a^2\right)\)

\(\Leftrightarrow2x^2-3xa-2a^2=0\)

\(\Leftrightarrow2x^2-4ax+xa-2a^2=0\)

\(\Leftrightarrow2x.\left(x-2a\right)+a.\left(x-2a\right)=0\)

\(\Leftrightarrow\left(x-2a\right)\left(a+2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=x\\a=-2x\end{cases}}\)

+) Với \(2a=x\Rightarrow2\sqrt{2x-1}=x\left(x\ge0\right)\)

\(\Leftrightarrow x^2=4.\left(2x-1\right)\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Leftrightarrow x=4\pm2\sqrt{3}\) ( Thỏa mãn )

+) Với \(a=-2x\Rightarrow\sqrt{2x-1}=-2x\left(x\le0\right)\)

\(\Leftrightarrow4x^2=2x-1\)

\(\Leftrightarrow4x^2-2x+1=0\) ( Vô nghiệm )

Vậy phương trình đã cho có tập nghiệm \(S=\left\{4\pm2\sqrt{3},2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
LT
5 tháng 6 2020 lúc 20:45

(x - 1)(2x² - 10) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x^2-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{1;\sqrt{5}\right\}\)
(2x - 7)2 - 6(2x - 7)(x - 3) = 0

\(\Leftrightarrow\left(2x-7\right)\left(2x-7-6x+18\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(11-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\4x=11\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\frac{7}{2};\frac{11}{4}\right\}\)
(5x + 3)(x2 + 4) = 0

\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-3\\x^2=-4\left(Loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{3}{5}\)

Vậy phương trình có tập nghiệm là: \(S=\left\{-\frac{3}{5}\right\}\)

Bình luận (0)
HA
5 tháng 6 2020 lúc 20:42

a)

\(\left(x-1\right)\cdot\left(2x^2-10\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot2\cdot\left(x^2-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{5}\end{matrix}\right.\)

b)

\(\left(2x-7\right)^2-6\cdot\left(6x-7\right)\cdot\left(x-3\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left[\left(2x-7\right)-6\cdot\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(2x-7-6x+18\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(11-4x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

c)

\(\left(5x+3\right)\cdot\left(x^2+4\right)=0\)

\(\left(x^2+4\right)>0\Rightarrow\left(loại\right)\)

\(\Rightarrow5x+3=0\\ \Rightarrow x=-\frac{3}{5}\)

Bình luận (0)
DV
Xem chi tiết
NT
10 tháng 2 2020 lúc 16:37

1) Ta có: 3x-12=5x(x-4)

\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3x-12-5x^2+20x=0\)

\(\Leftrightarrow-5x^2+23x-12=0\)

\(\Leftrightarrow-5x^2+20x+3x-12=0\)

\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)

\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)

\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)

\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)

2) Ta có: 3x-15=2x(x-5)

\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)

3) Ta có: 3x(2x-3)+2(2x-3)=0

\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)

4) Ta có: (4x-6)(3-3x)=0

\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 2 2020 lúc 16:15

4) (4x - 6 ) ( 3 - 3x ) = 0

<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
10 tháng 2 2020 lúc 16:17

Bài 1 :

a, Ta có : \(3x-12=5x\left(x-4\right)\)

=> \(3x-12=5x^2-20x\)

=> \(3x-12-5x^2+20x=0\)

=> \(5x^2-23x+12=0\)

=> \(5x^2-20x-3x+12=0\)

=> \(5x\left(x-4\right)-3\left(x-4\right)=0\)

=> \(\left(5x-3\right)\left(x-4\right)=0\)

=> \(\left[{}\begin{matrix}5x-3=0\\x-4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{5}\\x=4\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{3}{5}\) và x = 4 .

b, Ta có : \(3x-15=2x\left(x-5\right)\)

=> \(3x-15-2x\left(x-5\right)=0\)

=> \(3\left(x-5\right)-2x\left(x-5\right)=0\)

=> \(\left(3-2x\right)\left(x-5\right)=0\)

=> \(\left[{}\begin{matrix}3-2x=0\\x-5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{3}{2}\) và x = 5 .

c, Ta có : \(3x\left(2x-3\right)+2\left(2x-3\right)=0\)

=> \(\left(3x+2\right)\left(2x-3\right)=0\)

=> \(\left[{}\begin{matrix}3x+2=0\\2x-3=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=-2\\2x=3\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(-\frac{2}{3}\) và x = \(\frac{3}{2}\) .

d, Ta có : \(\left(4x-6\right)\left(3-3x\right)=0\)

=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}4x=6\\-3x=-3\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{6}{4}\\x=1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 1 và x = \(\frac{6}{4}\) .

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
NT
20 tháng 3 2020 lúc 10:06

ta có 2x =7+x

->2x+x =7

->3x =7

->x =7/3

vậy x =7/3

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
NT
12 tháng 5 2023 lúc 13:10

c: =>(x+2)(x+3)(x-5)(x-6)=180

=>(x^2-3x-10)(x^2-3x-18)=180

=>(x^2-3x)^2-28(x^2-3x)=0

=>x(x-3)(x-7)(x+4)=0

=>\(x\in\left\{0;3;7;-4\right\}\)

c: =>(x-3)(x+2)(2x+1)(3x-1)=0

=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NA
28 tháng 2 2020 lúc 18:05

Phương trình đưa được về dạng ax + b = 0Phương trình đưa được về dạng ax + b = 0

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết