x2+x+4=0 chứng minh vô nghiệm
x2+x+4=0 chứng minh vô nghiệm
X² - 2x = 0
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(S=\left\{0;2\right\}\)
-3x + 9 >_0
\(-3x+9\ge0\)
\(\Leftrightarrow-3x\ge-9\)
\(\Leftrightarrow x\le3\)
-3x + 9 ≥ 0
⇔-3x ≥ -9
⇔ x \(\le\) -9/-3
⇔ x \(\le\) 3
5x-4(6-x)(x+3)=(4-2x)(3-2x)+2
\(5x-4\left(6-x\right)\left(x+3\right)=\left(4-2x\right)\left(3-2x\right)+2\)
\(\Leftrightarrow5x-4\left(18+3x-x^2\right)=12-14x+4x^2+2\)
\(\Leftrightarrow5x-72-12x+4x^2-14+14x-4x^2=0\)
\(\Leftrightarrow7x-86=0\)
\(\Leftrightarrow x=\dfrac{86}{7}\)
\(5x-4\left(6-x\right)\left(x+3\right)=\left(4-2x\right)\left(3-2x\right)+2\\ < =>5x-4\left(6x+18-x^2-3x\right)=\left(12-8x-6x+4x^2\right)+2\)
\(< =>5x-24x-72+4x^2+12x=12-8x-6x+4x^2+2\)
\(< =>4x^2-4x^2+5x-24x+12x+8x+6x=12+2+72\)
\(< =>7x=86\\ < =>x=\dfrac{86}{7}\)
\(5x-4\left(6-x\right)\left(x+3\right)=\left(4-2x\right)\left(3-2x\right)+2\)
\(\Leftrightarrow5x-4\left(6x+18-x^2-3x\right)=\left(12-8x-6x+4x^2\right)+2\)
\(\Leftrightarrow5x-4\left(-x^2+3x+18\right)=4x^2-14x+12+2\)
\(\Leftrightarrow5x+4x^2-12x-72=4x^2-14x+14\)
\(\Leftrightarrow5x+4x^2-12x-72-4x^2+14x-14=0\)
\(\Leftrightarrow7x-86=0\)
\(\Leftrightarrow7x=86\)
\(\Leftrightarrow x=\dfrac{86}{7}\)
\(\text{Vậy phương trình trên có tập nghiệm là }S=\left\{\dfrac{86}{7}\right\}\)
Khi giải pt mà ra kết quả là 0=0 thì nên kết luận ntn ạ?
Nếu pt ra 0x = 0 thì kết luận pt vô số nghiệm, còn nếu 0x ≠ 0 thì kết luận là vô nghiệm.
\(x^5+x^4+x^3+x^2+x=0\)
⇔\(\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)=0\)
⇔\(x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
⇔\(\left(x+1\right)\left(x^4+x^2+1\right)=0\)
⇔ \(\left[{}\begin{matrix}x+1=0\\x^4+x^2+1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x\in\varnothing\end{matrix}\right.\)
Giải tập nghiệm: a, ( x - 1 )² - 4 = 0 b, x + 1/x-1 = 1 + 1/x-1
\(a,\left(x-1\right)^2-4=0\)
\(\Leftrightarrow\left(x-1\right)^2=4=\left(\pm2\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;-1\right\}\)
__________________________________
\(b,\dfrac{x+1}{x-1}=1+\dfrac{1}{x-1}\)
\(\Leftrightarrow\dfrac{x+1}{x-1}=\dfrac{x-1}{x-1}+\dfrac{1}{x-1}\)
\(\Leftrightarrow x+1=x-1+1\)
\(\Leftrightarrow x-x=-1-1+1\)
\(\Leftrightarrow0=-1\) (vô lý)
Vậy phương trình vô nghiệm.
`a, -2x + 8 = 0`
`<=> 8 = 2x`
`<=> x = 4`
Vậy PT có nghiệm là `4`.
`b, -3x+1 =0`
`=> 1=3x`
`<=> x = 1/3`
Vậy PT có nghiệm là `1/3`
`c, -2x + 5= 0`
`<=> 2x = 5`
`<=> x = 5/2`
Vậy PT có nghiệm là `5/2`
`d, -3x-5=0`
`<=> 3x = -5`
`<=> x = -5/3`
Vậy PT có nghiệm là `-5/3`
`e, 4x-10=0`
`<=> 4x=10`
`<=> x = 5/2`
Vậy PT có nghiệm là `5/2`
`f, 22x+11=0`
`<=> 22x=-11`
`<=> x=-11/22`
`<=> x=-1/2`
Vậy PT có nghiệm là `-1/2`
12) -2x + 8 = 0
<=> -2x = -8
<=> x=4
21) 2x + 3=0
<=> 2x = -3
<=> x = -3/2
18: =>3x-x=3+1
=>2x=4
=>x=2
19: =>-7x+3x=9-15
=>-4x=-6
=>x=1,5
20: x=18+3=21
21: =>2x+5x=15-1
=>7x=14
=>x=2
22: =>3x-2x=5+2
=>x=7
23: =>4x-3x=-5
=>x=-5
24: =>-23x-x=-19-5
=>-24x=-24
=>x=1
15: =>-3x+7-9+x=0
=>-2x-2=0
=>2x+2=0
=>x=-1
17: =>5x-7=2x+2
=>3x=9
=>x=3
16: =>-2x+3+5x-12=0
=>3x-9=0
=>x=3
13: =>-3x+5-2x-11=0
=>-5x-6=0
=>x=-6/5
12: =>4x-9x=15+5
=>-5x=20
=>x=-4
11: =>5x=9
=>x=9/5
10: =>-2x-4x=-5-11
=>-6x=-16
=>x=8/3
\(10,11-2x=4x-5\)
\(\Leftrightarrow-2x-4x=-5-11\)
\(\Leftrightarrow-6x=-16\)
\(\Leftrightarrow x=\dfrac{8}{3}\)
\(11,2x+3=12-3x\)
\(\Leftrightarrow2x+3x=12-3\)
\(\Leftrightarrow5x=9\)
\(\Leftrightarrow x=\dfrac{9}{5}\)
\(12,4x-5=15x+9\)
\(\Leftrightarrow4x-15x=9+5\)
\(\Leftrightarrow-11x=14\)
\(\Leftrightarrow x=-\dfrac{14}{11}\)
\(13,5-3x=11+2x\)
\(\Leftrightarrow-3x-2x=11-5\)
\(\Leftrightarrow-5x=6\)
\(\Leftrightarrow x=-\dfrac{6}{5}\)
\(14,6x+12=3x-5\)
\(\Leftrightarrow6x-3x=-5-12\)
\(\Leftrightarrow3x=-17\)
\(\Leftrightarrow x=-\dfrac{17}{3}\)
\(15,7-3x=9-x\)
\(\Leftrightarrow-3x+x=9-7\)
\(\Leftrightarrow-2x=2\)
\(\Leftrightarrow x=-1\)
\(16,-2x+3=12-5x\)
\(\Leftrightarrow-2x+5x=12-3\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
\(17,2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2-5x+7=0\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
10
`11-2x=4x-5`
`<=>-2x-4x=-5-11`
`<=>-6x=-16`
`<=>x=8/3`
11)
`2x+3=12-3x`
`<=>2x+3x=12-3`
`<=>5x=9`
`<=>x=9/5`
12)
`4x-5=15+9x`
`<=>4x-9x=15+5`
`<=>-5x=20`
`<=>x=-4`
13)
`5-3x=11+2x`
`<=>-3x-2x=11-5`
`<=>-5x=6`
`<=>x=-6/5`
14)
`6x+12=3x-5`
`<=>6x-3x=-5-12`
`<=>3x=-17`
`<=>x=-17/3`
15)
`7-3x=9-x`
`<=>-3x+x=9-7
`<=>-2x=2`
`<=>x=-1`
16)
`-2x+3=12-5x`
`<=>-2x+5x=12-3`
`<=>3x=9`
`<=>x=3`
17)
`2(x+1)=5x-7`
`<=>2x+2=5x-7`
`<=>2x-5x=-7+2`
`<=>-3x=-5`
`<=>x=5/3`