Bài 4: Phương trình tích

LN

giải pt (x - 1)(2x² - 10) = 0
(2x - 7)² - 6(2x - 7)(x - 3) = 0
(5x + 3)(x² + 4) = 0

LT
5 tháng 6 2020 lúc 20:45

(x - 1)(2x² - 10) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x^2-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{1;\sqrt{5}\right\}\)
(2x - 7)2 - 6(2x - 7)(x - 3) = 0

\(\Leftrightarrow\left(2x-7\right)\left(2x-7-6x+18\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(11-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\4x=11\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\frac{7}{2};\frac{11}{4}\right\}\)
(5x + 3)(x2 + 4) = 0

\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-3\\x^2=-4\left(Loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{3}{5}\)

Vậy phương trình có tập nghiệm là: \(S=\left\{-\frac{3}{5}\right\}\)

Bình luận (0)
HA
5 tháng 6 2020 lúc 20:42

a)

\(\left(x-1\right)\cdot\left(2x^2-10\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot2\cdot\left(x^2-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{5}\end{matrix}\right.\)

b)

\(\left(2x-7\right)^2-6\cdot\left(6x-7\right)\cdot\left(x-3\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left[\left(2x-7\right)-6\cdot\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(2x-7-6x+18\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(11-4x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

c)

\(\left(5x+3\right)\cdot\left(x^2+4\right)=0\)

\(\left(x^2+4\right)>0\Rightarrow\left(loại\right)\)

\(\Rightarrow5x+3=0\\ \Rightarrow x=-\frac{3}{5}\)

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
DV
Xem chi tiết
TN
Xem chi tiết
LK
Xem chi tiết
KV
Xem chi tiết
CN
Xem chi tiết
NC
Xem chi tiết
MC
Xem chi tiết
NM
Xem chi tiết