\(f\left(x\right)=\left(-3x+3\right).\left(x+3\right).\left(-x-4\right)\)
Bài 3 : Xét dấu biểu thức sau :
1 , \(f\left(x\right)=\frac{x-7}{4x^2-19x+12}\)
2 , \(f\left(x\right)=\frac{11x+3}{-x^2+5x-7}\)
3 , \(f\left(x\right)=\frac{3x-2}{x^3-3x^2+2}\)
4 , \(f\left(x\right)=\frac{x^2+4x-12}{\sqrt{6}x^2+3x+\sqrt{2}}\)
5 , \(f\left(x\right)=\frac{x^2-3x-2}{-x^2+x-1}\)
6 , \(f\left(x\right)=\frac{x^3-5x+4}{x^4-4x^3+8x-5}\)
7 , \(f\left(x\right)=\frac{\left(x+3\right)\left(x-2\right)\left(-2x^2+x-1\right)}{\left(2x-5\right)\left(x^2+3x-10\right)}\)
8 , \(f\left(x\right)=\left(-x^2+x-1\right)\left(6x^2-5x+1\right)\)
9 , \(f\left(x\right)=\frac{x^2-x-2}{-x^2+3x+4}\)
10 , \(f\left(x\right)=\left(x^2-5x+4\right)\left(2-5x+2x^2\right)\)
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)
5.
\(f\left(x\right)=\frac{x^2-3x-2}{-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\frac{3\pm\sqrt{17}}{2}\)
\(f\left(x\right)>0\Rightarrow\frac{3-\sqrt{17}}{2}< x< \frac{3+\sqrt{17}}{2}\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3-\sqrt{17}}{2}\\x>\frac{3+\sqrt{17}}{2}\end{matrix}\right.\)
6.
\(f\left(x\right)=\frac{\left(x-1\right)\left(x^2+x-4\right)}{\left(x-1\right)^2\left(x^2-2x-5\right)}=\frac{x^2+x-4}{\left(x-1\right)\left(x^2-2x-5\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{6}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\left\{\frac{-1\pm\sqrt{17}}{2}\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{-1-\sqrt{17}}{2}< x< 1-\sqrt{6}\\1< x< \frac{-1+\sqrt{17}}{2}\\x>1+\sqrt{6}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{-1-\sqrt{17}}{2}\\1-\sqrt{6}< x< 1\\\frac{-1+\sqrt{17}}{2}< x< 1+\sqrt{6}\end{matrix}\right.\)
d) \(^{ }4x\left(2x+3\right)-8x\left(x+4\right)\)
e) \(^{ }2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
f) \(^{ }x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(4x\left(2x+3\right)-8x\left(x+4\right)\)
\(=8x^2+12x-8x^2-32x\)
=-20x
e: Ta có: \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
\(=10x^2+4x+6x^2-2x-9x+3\)
\(=16x^2-7x+3\)
f: Ta có: \(x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3+4x^2+4x-x^3-3x^2-3x-1+3x^2-3\)
\(=4x^2+x-4\)
Tìm thương của \(F\left(x\right):G\left(x\right)khi:\)
\(F\left(x\right)=\)\(12x^4+10x^3-x-3\)
\(G\left(x\right)=3x^2+x+1\)
\(\dfrac{F\left(x\right)}{G\left(x\right)}=\dfrac{12x^4+10x^3-x-3}{3x^2+x+1}\)
\(=\dfrac{12x^4+4x^3+4x^2+6x^3+2x^2+2x-6x^2-2x-2-x-1}{3x^2+x+1}\)
\(=4x^2+2x-2+\dfrac{-x-1}{3x^2+x+1}\)
=>Thương là 4x^2+2x-2
Câu 1 : Xét dấu các biểu thức sau :
a , f(x) = \(\left(2x-1\right)\left(x+3\right)\)
b , f(x)= \(\left(-3x-3\right)\left(x+2\right)\left(x+3\right)\)
c , f(x) = \(\frac{-4}{3x+1}-\frac{3}{2-x}\)
d , f (x) = \(4x^2-1\)
e , f(x)= \(\left(-2x+3\right)\left(x-2\right)\left(x+4\right)\)
f , f(x) = \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
g , f (x) = \(\frac{3}{2x-1}-\frac{1}{x-2}\)
h , f ( x) = \(\left(4x-1\right)\left(x+2\right)\left(3x-5\right)\left(-2x+7\right)\)
giúp mình với mình đang cần gấp
Xét dấu các biểu thức :
a. \(f\left(x\right)=\left(2x-1\right)\left(x+3\right)\)
b. \(f\left(x\right)=\left(-3x-3\right)\left(x+2\right)\left(x+3\right)\)
c. \(f\left(x\right)=-\dfrac{4}{3x+1}-\dfrac{3}{2-x}\)
d. \(f\left(x\right)=4x^2-1\)
a) Ta lập bảng xét dấu
Kết luận: f(x) < 0 nếu - 3 < x <
f(x) = 0 nếu x = - 3 hoặc x =
f(x) > 0 nếu x < - 3 hoặc x > .
b) Làm tương tự câu a).
f(x) < 0 nếu x ∈ (- 3; - 2) ∪ (- 1; +∞)
f(x) = 0 với x = - 3, - 2, - 1
f(x) > 0 với x ∈ (-∞; - 3) ∪ (- 2; - 1).
c) Ta có: f(x) =
Làm tương tự câu b).
f(x) không xác định nếu x = hoặc x = 2
f(x) < 0 với x ∈ ∪
f(x) > 0 với x ∈ ∪ (2; +∞).
d) f(x) = 4x2 – 1 = (2x - 1)(2x + 1).
f(x) = 0 với x =
f(x) < 0 với x ∈
f(x) > 0 với x ∈ ∪
Bài 2 Xét dấu biểu thức sau
1 , \(f\left(x\right)=x^2-\sqrt{3}x+\frac{3}{4}\)
2 , \(f\left(x\right)=-x^2+3x-2\)
3 , \(f\left(x\right)=x^4-4x+1\)
4 , \(f\left(x\right)=\frac{3x+7}{x^2-x-2}\)
5 , \(f\left(x\right)=\frac{x+2}{3x+1}-\frac{x-2}{2x-1}\)
6 , \(f\left(x\right)=\frac{1}{x^2-5x+4}-\frac{1}{x^2-7x+10}\)
7 , \(f\left(x\right)=\left(x-1\right)\left(x-3\right)-\frac{18}{x^2-4x-4}\)
8 , \(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)
9 , \(f\left(x\right)=\left(x+3\right)\left(-4x^2+9x-2\right)\)
10 , \(f\left(x\right)=\frac{10-x}{5+x^2}-\frac{1}{2}\)
Lập bảng xét dấu các biểu thức sau :
a. \(f\left(x\right)=\left(3x^2-10x+3\right)\left(4x-5\right)\)
b. \(f\left(x\right)=\left(3x^2-4x\right)\left(2x^2-x-1\right)\)
c. \(f\left(x\right)=\left(4x^2-1\right)\left(-8x^2+x-3\right)\left(2x+9\right)\)
d. \(f\left(x\right)=\dfrac{\left(3x^2-x\right)\left(3-x^2\right)}{4x^2+x-3}\)
a) 3x^3 -10x+3 =(3x-1)(x-3)
x | -vc | 1/3 | 5/4 | 3 | +vc | |||||||||
3x-1 | - | 0 | + | + | + | + | + | |||||||
x-3 | - | - | - | - | - | 0 | + | |||||||
4x-5 | - | - | - | 0 | + | + | + | |||||||
VT | - | 0 | + | 0 | - | 0 | + |
Kết luận
VT< 0 {dấu "-"} khi x <1/3 hoắc 5/4<x<3
VT>0 {dấu "+"} khi x 1/3<5/4 hoặc x> 3
VT=0 {không có dấu} khi x={1/3;5/4;3}
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
Xét dấu của mỗi tam thức bậc hai sau:
a) \(f\left( x \right) = 3{x^2} - 4x + 1\)
b) \(f\left( x \right) = 9{x^2} + 6x + 1\)
c) \(f\left( x \right) = 2{x^2} - 3x + 10\)
d) \(f\left( x \right) = - 5{x^2} + 2x + 3\)
e) \(f\left( x \right) = - 4{x^2} + 8x - 4\)
g) \(f\left( x \right) = - 3{x^2} + 3x - 1\)
a) Ta có \(a = 3 > 0,b = - 4,c = 1\)
\(\Delta ' = {\left( { - 2} \right)^2} - 3.1 = 1 > 0\)
\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\). Khi đó:
\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\);
\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( {\frac{1}{3};1} \right)\)
b) Ta có \(a = 9 > 0,b = 6,c = 1\)
\(\Delta ' = 0\)
\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = - \frac{1}{3}\). Khi đó:
\(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\)
c) Ta có \(a = 2 > 0,b = - 3,c = 10\)
\(\Delta = {\left( { - 3} \right)^2} - 4.2.10 = - 71 < 0\)
\( \Rightarrow \)\(f\left( x \right) > 0\forall x \in \mathbb{R}\)
d) Ta có \(a = - 5 < 0,b = 2,c = 3\)
\(\Delta ' = {1^2} - \left( { - 5} \right).3 = 16 > 0\)
\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{{ - 3}}{5},x = 1\). Khi đó:
\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; - \frac{3}{5}} \right)\) và \(\left( {1; + \infty } \right)\);
\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \frac{3}{5};1} \right)\)
e) Ta có \(a = - 4 < 0,b = 8c = - 4\)
\(\Delta ' = 0\)
\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = 1\). Khi đó:
\(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)
g) Ta có \(a = - 3 < 0,b = 3,c = - 1\)
\(\Delta = {3^2} - 4.\left( { - 3} \right).\left( { - 1} \right) = - 3 < 0\)
\( \Rightarrow \)\(f\left( x \right) < 0\forall x \in \mathbb{R}\)