\(\dfrac{F\left(x\right)}{G\left(x\right)}=\dfrac{12x^4+10x^3-x-3}{3x^2+x+1}\)
\(=\dfrac{12x^4+4x^3+4x^2+6x^3+2x^2+2x-6x^2-2x-2-x-1}{3x^2+x+1}\)
\(=4x^2+2x-2+\dfrac{-x-1}{3x^2+x+1}\)
=>Thương là 4x^2+2x-2
\(\dfrac{F\left(x\right)}{G\left(x\right)}=\dfrac{12x^4+10x^3-x-3}{3x^2+x+1}\)
\(=\dfrac{12x^4+4x^3+4x^2+6x^3+2x^2+2x-6x^2-2x-2-x-1}{3x^2+x+1}\)
\(=4x^2+2x-2+\dfrac{-x-1}{3x^2+x+1}\)
=>Thương là 4x^2+2x-2
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
1.Viết đa thức dưới dạng tổng của các đơn thức rồi thu gọn:
b) \(E=\left(a-1\right)\left(x^2+1\right)-x\left(y+1\right)+\left(x+y^2-a+1\right)\)
2.Cho:
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)
Hãy tìm các đa thức f(x) ; g(x)
CHO CÁC ĐA THỨC :
\(f\left(x\right)=5x^4+3x^2+x-1;h\left(x\right)=-x^4+3x^3-2x^2-x+2\)
\(g\left(x\right)=2x^4-x^3+x^2+2x+1\)
HỎI ĐA THỨC \(f\left(x\right)+h\left(x\right)-g\left(x\right)\)=?
Cho hai đa thức \(f\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(g\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
Tính \(f\left(x\right)+g\left(x\right)\)và \(f\left(x\right)-g\left(x\right)\)
Bài tập:
Cho \(f\left(x\right)=x^3-2x^2+3x+1\)
\(g\left(x\right)=x^3+x-1\)
\(h\left(x\right)=2x^2-1\)
a) Tính \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
b) Tìm x sao cho \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
Cho đa thức \(f\left(x\right)=\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)và \(g\left(x\right)=ax^2+bx-4\)
a)Thu gọn đa thức f(x)
b)Tìm a và b của đa thức g(x) biết rằng g(x)=0 tại x=1 ; x=4
c)CMR g(x)=(1-x)(x-4)
d)Viết đa thức h(x)=f(x)+g(x) thành tích số
e)Tìm nghiệm của đa thức h(x)
cho: \(f\left(x\right)=a\times x^3+4\times x\times\left(x^2-1\right)+8\)
\(g\left(x\right)=x^3-4\times x\times\left(b\times x+1\right)+c-3\)
tìm a, b, c để \(f\left(x\right)=g\left(x\right)\)
Xác định các hệ số a,b để \(f\left(x\right)=x^4+3x^3-x^2+\left(2a-b\right)x+3b+a\) chia hết cho \(g\left(x\right)=x^2+3x-1\)