Những câu hỏi liên quan
H24
Xem chi tiết
NT
23 tháng 7 2021 lúc 13:34

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

Bình luận (0)
H24
Xem chi tiết
BB
Xem chi tiết
NT
12 tháng 3 2022 lúc 15:53

Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Vì BD là pg \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau ta có 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{12}{24}=\dfrac{1}{2}\Rightarrow DC=\dfrac{15}{2}cm;DA=\dfrac{9}{2}cm\)

Bình luận (1)
PB
Xem chi tiết
CT
13 tháng 6 2018 lúc 3:53

Gọi M là trung điểm của BC

Ta tính được AG = 2 3 AM = 10cm

Gọi N là trung điểm của AB => MN//AC, MN ⊥ AB

D,I,G thẳng hàng

<=> A G A M = A D A N = 2 3 <=> A D 2 A N = 1 3 <=> A D A B = 1 3

Ta có AD = r nội tiếp =  A B + A C - B C 2 <=>  A B 3 = A B + A C - B C 2

<=> AB+3AC = 3BC =  A B 2 + A C 2

<=> 3AC = 4AB (đpcm)

Áp dụng kết quả trên ta có: AD =  A B + A C - B C 2 = 3cm

=> ID = DA = 3cm => IG = DG – ID = 1cm

Bình luận (0)
TT
Xem chi tiết
CD
Xem chi tiết
CD
8 tháng 8 2019 lúc 14:18

mọi người giúp mình với

Bình luận (0)
VB
8 tháng 8 2019 lúc 14:32

vì BH=9 , HC=16

=> BC=25

xét tam giác ABC ...., ta có

BC^2=CA^2+AB^2

hay 25^2=20^2 +Ab^2

625=400 + AB^2

AB^2=225

AB=15

xét tam giác ABH...., ta có

AB^2=AH^2 + BH^2

hay 15^2= Ah^2 + 9^2

225= AH^2 +81

AH^2= 144

AH=12

thêm kl và những chỗ còn thiếu vào nhé

Bình luận (0)
CD
Xem chi tiết
KN
8 tháng 8 2019 lúc 15:40

Ta có: \(BC=BH+CH=9+16=25\)

Áp dụng định lý Py-  ta - go vào \(\Delta ABC\), ta được:

   \(AB^2=BC^2-AC^2\)

\(\Leftrightarrow AB^2=25^2-20^2\)

\(\Leftrightarrow AB^2=625-400\)

\(\Leftrightarrow AB^2=225\)

\(\Leftrightarrow AB=\sqrt{225}=15\)

Áp dụng định lý Py-  ta - go vào \(\Delta AHC\), ta được:

   \(AH^2=AC^2-CH^2\)

\(\Leftrightarrow AH^2=20^2-16^2\)

\(\Leftrightarrow AH^2=400-256\)

\(\Leftrightarrow AH^2=144\)

\(\Leftrightarrow AH=\sqrt{144}=12\)

Bình luận (0)

Bài làm

BC=BH+HC=9+6=25(cm)BC=BH+HC=9+6=25(cm)

Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:

BC2=AB2+AC2BC2=AB2+AC2

⇒AB2=BC2+AC2=252−202⇒AB2=BC2+AC2=252−202

=625−400=225=152=625−400=225=152

Vậy AB=15cm

Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
AH2=AC2−HC2=202−162=122AH2=AC2−HC2=202−162=122

Vậy AH= 12cm

# Học tốt #

Bình luận (0)

Bài làm

~ Vừa rồi mik viết thiếu mũ nhá. ~
 

Ta có : BC = BH + HC = 9 + 16 = 25 (cm)

Tam giác ABC vuông tại A nên :

BC2 = AB2 + AC2

252 = AB2 + 162

=> AB2 = 252 - 202

AB2 = 625 - 400 = 225 = 152

=> AB = 15 (cm)

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = AH2 + 162

=> AH2 = 202 - 162

AH = 400 - 256 = 144 = 122

=> AH = 12 (cm)

Vậy AB = 15 cm ; AH = 12 cm

# Học tốt #

Bình luận (0)
NQ
Xem chi tiết
NT
16 tháng 6 2023 lúc 0:16

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

Bình luận (0)
DH
Xem chi tiết
NT
7 tháng 3 2022 lúc 9:08

Đề sai rồi bạn

Bình luận (0)
NP
7 tháng 3 2022 lúc 9:11

tui vẽ hoài chẳng ra luôn

Bình luận (0)
DH
Xem chi tiết