Những câu hỏi liên quan
TT
Xem chi tiết
AH
26 tháng 12 2022 lúc 11:37

Lời giải:
a.

ĐKXĐ: $x\neq \pm 2$

b.
\(P=\left[\frac{4(x-2)}{(x+2)(x-2)}+\frac{3(x+2)}{(x+2)(x-2)}-\frac{5x+2}{(x-2)(x+2)}\right].\frac{x+2}{2}\)

\(=\frac{4(x-2)+3(x+2)-(5x+2)}{(x-2)(x+2)}.\frac{x+2}{2}=\frac{2(x-2)}{(x-2)(x+2)}.\frac{x+2}{2}=1\)

Bình luận (0)
YA
Xem chi tiết
H9
21 tháng 8 2023 lúc 14:58

a) ĐK: \(x\ne4,x\ne2;x\ne-2\)

b) \(A=\dfrac{x^3}{x-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)

\(A=\dfrac{x^3}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^3-x^2-2x-2x+4}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}\)

\(A=\dfrac{\left(x-1\right)\left(x^2-4\right)}{x^2-4}\)

\(A=x-1\)

c) \(A=0\) khi:

\(x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

d) A dương khi: \(A>0\)

\(x-1>0\)

\(\Leftrightarrow x>1\)

Kết hợp với đk: 

\(x>1,x\ne4,x\ne2\)

Bình luận (0)
PT
Xem chi tiết
H24
8 tháng 1 2021 lúc 19:54

a) A đc xác định <=>2x+4\(\left\{{}\begin{matrix}2x+4\ne0\\x^2-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)

 

Bình luận (0)
H24
8 tháng 1 2021 lúc 19:55

câu b bn quy đòng mẫu là đc

 

Bình luận (0)
NT
8 tháng 1 2021 lúc 20:03

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

b) Ta có: \(A=\dfrac{x}{2x+4}+\dfrac{3x+2}{x^2-4}\)

\(=\dfrac{x}{2\left(x+2\right)}+\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(3x+2\right)}{2\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2-2x+6x+4}{2\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x^2+4x+4}{2\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x+2}{2\left(x-2\right)}\)

c) Để A=0 thì \(\dfrac{x+2}{2\left(x-2\right)}=0\)

\(\Leftrightarrow x+2=0\)

hay x=-2(Không thỏa mãn ĐKXĐ)

Vậy: Không có giá trị nào của x để A=0

Bình luận (1)
H24
Xem chi tiết
NT
23 tháng 10 2021 lúc 21:48

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b: Ta có: \(D=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+5}{x-4}\right)\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-5\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{3\sqrt{x}-1}{\sqrt{x}}\)

Bình luận (0)
QT
Xem chi tiết
TL
2 tháng 1 2023 lúc 23:46

a) Biểu thức A xác định `<=>x^2-1 ne 0 <=> (x-1)(x+1) ne 0 <=> x ne +-1`

b) `A=(x^2-3x-4)/(x^2 -1) = (x^2+x-4x-4)/(x^2-1) = (x(x+1)-4(x+1))/(x^2-1)`

`= ((x+1)(x-4))/((x+1)(x-1))=(x-4)/(x-1)`

c) `A` là số nguyên `<=> (x-4) vdots\ (x-1)`

`<=>[(x-1)-3] vdots\ (x-1)`

`<=> -3\ vdots\ (x-1)`

`<=> (x-1)\ in\ Ư(-3)`

`<=>(x-1)\ in\ {-3;-1;3;1}`

`<=>x\ in\ {-2;0;4;2}`

Vậy...

 

Bình luận (0)
NT
2 tháng 1 2023 lúc 23:43

a: ĐKXĐ: x<>1; x<>-1

b: \(A=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)

c: Để A là số nguyên thì x-1-3 chia hết cho x-1

=>\(x-1\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;0;4;-2\right\}\)

Bình luận (0)
BS
2 tháng 1 2023 lúc 23:59

\(a,ĐK:x^2-1\ne0\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)\ne0\)

\(\Rightarrow\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\)           \(\Rightarrow\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

       Vậy ĐKXĐ của \(x\) là \(x\ne\pm1\)

\(b,\dfrac{x^2-3x-4}{x^2-1}=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)

\(c,\) Ta có: \(\dfrac{x-4}{x-1}=\dfrac{x-1-3}{x-1}=\dfrac{x-1}{x-1}-\dfrac{3}{x-1}=1-\dfrac{3}{x-1}\)

Để \(A\in Z\) thì \(\dfrac{3}{x-1}\in Z\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(3\)\(-3\)
\(x\)\(2\) (TMĐK)\(0\) (TMĐK)\(4\) (TMĐK)\(-2\) (KTMĐK)

Vậy \(x\in\left\{2;0;4;-2\right\}\)

Bình luận (0)
DP
Xem chi tiết
H24
Xem chi tiết
NT
26 tháng 12 2021 lúc 11:42

a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)

b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)

\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)

Bình luận (0)
H24
Xem chi tiết
H24
5 tháng 6 2021 lúc 10:53

Nhìn mãi mới hiểu cái đề bài @-@

 

 

 

 

 

 


`a)đk:` $\begin{cases}\sqrt{x^2-2x} \ge 0\\x+\sqrt{x^2-2x} \ne 0\\x-\sqrt{x^2-2x} ne 0\\\end{cases}$
`<=>` $\begin{cases}x \ge 2\,or\,x<0\\x \ne 0\end{cases}$
`b)A=(x+sqrt{x^2-2x})/(x-sqrt{x^2-2x})-(x-sqrt{x^2-2x})/(x+sqrt{x^2+2x})`
`=((x+sqrt{x^2-2x})^2-(x-sqrt{x^2-2x})^2)/((x+sqrt{x^2-2x})(x-sqrt{x^2-2x}))`
`=(x^2+x^2-2x+2sqrt{x^2-2x}-x^2-x^2+2x+2sqrt{x^2-2x})/(x^2-x^2+2x)`
`=(4sqrt{x^2-2x})/(2x)`
`=(2sqrt{x^2-2x})/x`
`c)A<2`
`<=>2sqrt{x^2-2x}<2x`
`<=>sqrt{x^2-2x}<x(x>=2)`(BP 2 vế thì x>=2)
`<=>x^2-2x<x^2`
`<=>2x>0`
`<=>x>0`
`<=>x>=2`
Vậy `x>=2` thì `A<2`.

Bình luận (2)
LL
Xem chi tiết
NT
31 tháng 12 2022 lúc 19:34

a: ĐKXĐ: x<>4; x<>-4

b: \(A=\dfrac{\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{x-1}{x+4}\)

c: Để A nguyên thì x+4-5 chia hết cho x+4

=>\(x+4\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{-3;-5;1;-9\right\}\)

Bình luận (1)