H24

cho biểu thức A=(x+căn(x^2-2x)/x-căn(x^2-2x))-(x-căn(x^2-2x)/x+căn(x^2-2x))

a tìm điều kiện để a xác định

b rút gọn A

c tìm x để A<2

H24
5 tháng 6 2021 lúc 10:53

Nhìn mãi mới hiểu cái đề bài @-@

 

 

 

 

 

 


`a)đk:` $\begin{cases}\sqrt{x^2-2x} \ge 0\\x+\sqrt{x^2-2x} \ne 0\\x-\sqrt{x^2-2x} ne 0\\\end{cases}$
`<=>` $\begin{cases}x \ge 2\,or\,x<0\\x \ne 0\end{cases}$
`b)A=(x+sqrt{x^2-2x})/(x-sqrt{x^2-2x})-(x-sqrt{x^2-2x})/(x+sqrt{x^2+2x})`
`=((x+sqrt{x^2-2x})^2-(x-sqrt{x^2-2x})^2)/((x+sqrt{x^2-2x})(x-sqrt{x^2-2x}))`
`=(x^2+x^2-2x+2sqrt{x^2-2x}-x^2-x^2+2x+2sqrt{x^2-2x})/(x^2-x^2+2x)`
`=(4sqrt{x^2-2x})/(2x)`
`=(2sqrt{x^2-2x})/x`
`c)A<2`
`<=>2sqrt{x^2-2x}<2x`
`<=>sqrt{x^2-2x}<x(x>=2)`(BP 2 vế thì x>=2)
`<=>x^2-2x<x^2`
`<=>2x>0`
`<=>x>0`
`<=>x>=2`
Vậy `x>=2` thì `A<2`.

Bình luận (2)

Các câu hỏi tương tự
NP
Xem chi tiết
ST
Xem chi tiết
PN
Xem chi tiết
DV
Xem chi tiết
TM
Xem chi tiết
HH
Xem chi tiết
DA
Xem chi tiết
DO
Xem chi tiết
TB
Xem chi tiết