Những câu hỏi liên quan
PT
Xem chi tiết
KK
17 tháng 5 2018 lúc 18:23

Bài 1

\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)

Áp dụng bđt Cauchy dạng phân thức

\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu ''='' xảy ra khi \(a=b=c\)

Bình luận (0)
KK
17 tháng 5 2018 lúc 18:48

Bài 2

\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)

Áp dụng bđt Bunhiacopxki ta có

\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)

\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)

Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

Áp dụng bđt Cauchy dạng phân thức ta có

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)

\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)

\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c\)

Bình luận (1)
NC
Xem chi tiết
AH
17 tháng 2 2021 lúc 1:49

Đây là BĐT Iran 96 khá nổi tiếng. Bạn hoàn toàn có thể search trên google lời giải.

Bình luận (1)
H24
Xem chi tiết
NL
17 tháng 12 2020 lúc 1:48

\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)

\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
H24
Xem chi tiết
HO
Xem chi tiết
ND
31 tháng 8 2017 lúc 10:53

BT2: Nhân 2 lên, chuyển vế, biến đổi bla..... sẽ ra đpcm

Bình luận (0)
TM
Xem chi tiết
VT
1 tháng 8 2017 lúc 16:31

Đặt \(A=x+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\)

\(=\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}+\left(y+1\right)-1\)

Áp dụng BĐT Cô-si cho 2 số dương ta có :

\(\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge2\sqrt{\dfrac{\left(x-y\right).4}{\left(x-y\right)\left(y+1\right)^2}}=\dfrac{4}{y+1}\)

Xảy ra khi : \(\left(x-y\right)\left(y+1\right)=2\) ( do \(a,b>0\))

\(\Rightarrow A\ge\dfrac{4}{y+1}+\left(y+1\right)-1\)

Sử dụng Cô-Si lần nữa, ta có :

\(\dfrac{4}{y+1}+\left(y+1\right)\ge2\sqrt{\dfrac{4}{y+1}\left(y+1\right)}=2.2=4\)

Xảy ra khi \(\left(y+1\right)^2=4\Leftrightarrow y=1\)

Từ đây ta có thể thấy : \(A\ge4-1=3\)

Dấu "=" xảy ra khi \(\left(x-y\right)\cdot\left(y+1\right)=2\)\(y=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right..\)

Bài này hồi lúc cũng không biết làm, h biết truyền lại cho bạn :D

Bình luận (0)
H24
1 tháng 8 2017 lúc 16:13

Câu hỏi của Nguyễn Đắc Định - Toán lớp 10 | Học trực tuyến

Bình luận (0)
PT
Xem chi tiết
AH
14 tháng 5 2018 lúc 19:15

Lời giải:

Áp dụng BĐT Cauchy ta có:

\(\frac{a^4}{b^3(c+a)}+\frac{c+a}{4a}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8b^3}}=\frac{3a}{2b}\)

\(\frac{b^4}{c^3(a+b)}+\frac{a+b}{4b}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8c^3}}=\frac{3b}{2c}\)

\(\frac{c^4}{a^3(b+c)}+\frac{b+c}{4c}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8a^3}}=\frac{3c}{2a}\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}+\frac{1}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})+\frac{9}{4}\geq \frac{3}{2}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})\)

\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})-\frac{9}{4}\geq \frac{5}{4}.3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-\frac{9}{4}\)

hay \( \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)
AH
14 tháng 5 2018 lúc 19:21

Cách khác:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{(\frac{a^2}{b})^2}{b(c+a)}+\frac{(\frac{b^2}{c})^2}{c(a+b)}+\frac{(\frac{c^2}{a})^2}{a(b+c)}\geq \frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{b(c+a)+c(a+b)+a(b+c)}\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\)

\(\Rightarrow \left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2\geq (a+b+c)^2\)

Do đó: \(\text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)

Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)

Suy ra: \(\text{VT}\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}\) (đpcm)

Bình luận (0)
DG
Xem chi tiết
NY
Xem chi tiết
DB
23 tháng 3 2018 lúc 20:48

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

Bình luận (0)
AW
23 tháng 3 2018 lúc 20:55

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

Bình luận (0)