Những câu hỏi liên quan
PT
Xem chi tiết
TT
2 tháng 12 2018 lúc 10:39
https://i.imgur.com/yw2PEGF.gif
Bình luận (0)
PT
Xem chi tiết
NT
4 tháng 2 2019 lúc 9:37

Hỏi đáp Toán

Bình luận (0)
HB
Xem chi tiết
NL
24 tháng 8 2021 lúc 20:38

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-x\right)+1+4\left(y^2-2y\right)+4=10\\\left(x^2-x\right)\left(y^2-2y\right)=-\dfrac{3}{2}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2-x=u\\y^2-2y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4u+1+4v+4=10\\uv=-\dfrac{3}{2}\end{matrix}\right.\)

Chắc em tự giải được hệ này, chỉ cần thế là xong

Bình luận (0)
BL
Xem chi tiết
NL
13 tháng 2 2020 lúc 11:27

ĐKXĐ: \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2-4y+2\right)=-y\\\frac{1}{x}\left(y+\frac{1}{y}\right)=3-\frac{1}{y^2}\end{matrix}\right.\)

Do các vế của 2 pt đều khác 0, nhân vế với vế:

\(\left(y+\frac{1}{y}\right)\left(y^2-4y+2\right)=-y\left(3-\frac{1}{y^2}\right)\)

\(\Leftrightarrow y^3-4y^2+6y-4+\frac{1}{y}=0\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1=0\)

Chia 2 vế của pt cho \(y^2\) :

\(y^2+\frac{1}{y^2}-4\left(y+\frac{1}{y}\right)+6=0\)

Đặt \(y+\frac{1}{y}=t\Rightarrow y^2+\frac{1}{y^2}=t^2-2\)

\(\Rightarrow t^2-4t+4=0\Rightarrow t=2\Rightarrow y+\frac{1}{y}=2\Rightarrow y=1\)

b/ ĐKXĐ:

Đặt \(\left\{{}\begin{matrix}x^2+y^2-1=a\\\frac{y}{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+4b=21\\\frac{3}{a}+\frac{2}{b}=1\end{matrix}\right.\)

Một hệ pt hết sức bình thường, chắc bạn giải ngon lành :D

Bình luận (0)
 Khách vãng lai đã xóa
BL
13 tháng 2 2020 lúc 11:00

Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Trên con đường thành công không có dấu chân của kẻ lười biếng, Nguyễn Lê Phước Thịnh, Phạm Minh Quang, Phạm Lan Hương, Mysterious Person, Trần Thanh Phương, hellokoko,

@tth_new, @Nguyễn Việt Lâm, @Akai Haruma

Giúp em với ạ! Cần gấp lắm ạ! Thanks!

Bình luận (0)
 Khách vãng lai đã xóa
NY
Xem chi tiết
PD
15 tháng 1 2020 lúc 22:19

3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1 \)

<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)

hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
HP
17 tháng 4 2021 lúc 12:13

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)

Bình luận (0)
NL
17 tháng 4 2021 lúc 12:41

2.

\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)

\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)

\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)

\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\) 

\(\Rightarrow...\)

Bình luận (0)
DA
Xem chi tiết
NT
24 tháng 3 2020 lúc 9:16

\(\left\{ \begin{array}{l} {x^2} + {\left( {y + 1} \right)^2} = xy + x + 1\\ 2{x^3} = x + y + 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x^2} + {\left( {y - 1} \right)^2} - x\left( {y + 1} \right) = 1\\ 2{x^3} = x + y + 1 \end{array} \right.\left( * \right)\)Đặt $t=y+1$, ta có \(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l} {x^2} + {t^2} - xt = 1\\ 2{x^3} = \left( {x - t} \right)\left( {{x^2} + {t^2} - xt} \right) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x^2} + {t^2} - xt = 1\\ x = t \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = t = 1\\ x = t - 1 \end{array} \right.\)

Vậy nghiệm của hệ phương trình $(1;0);(-1;-2)$

Bình luận (0)
 Khách vãng lai đã xóa
WY
Xem chi tiết
VC
23 tháng 8 2018 lúc 21:52

Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)

Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)

=> hpy vô nghiệm

Bình luận (0)
VC
23 tháng 8 2018 lúc 22:03

c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)

Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt

\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)

với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)

đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !

Bình luận (0)
VC
23 tháng 8 2018 lúc 22:12

b) Ta có hpt <=> \(\left\{{}\begin{matrix}2\sqrt{x}-3y+2=-4z^2\\2\sqrt{3x}+4y-2=6z^2\\-3\sqrt{x}+y-4=-2z^2\end{matrix}\right.\)

cộng 3 vế của 3 pt, ta có \(\left(2\sqrt{3}-1\right)\sqrt{x}=4\Leftrightarrow\sqrt{x}=\dfrac{4}{2\sqrt{3}-1}\Leftrightarrow x=\dfrac{16}{\left(2\sqrt{3}-1\right)^2}\)

đến đây thay căn(x)=...vào và đặt z^2=m, ta sẽ ra 1 hệ mới chỉ có 2 ẩn y và m bậc 1 , lát thế vào sẽ ra bậc 2 thì dễ rồi !

Bình luận (0)
TH
Xem chi tiết
NL
18 tháng 2 2020 lúc 4:30

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y+1\right)\left(xy+1\right)=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)

\(\Rightarrow\left(x^2-y+1\right)\left(xy+1\right)-\left(x^2-y\right)^2-\left(xy+1\right)=0\)

\(\Leftrightarrow\left(xy+1\right)\left(x^2-y\right)-\left(x^2-y\right)^2=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y=x^2\\xy+1=x^2-y\end{matrix}\right.\) thay xuống pt dưới:

- Với \(y=x^2\) thay xuống pt dưới \(\Rightarrow x^3=1\)

- Với \(xy+1=x^2-y\) thay xuống dưới:

\(\left\{{}\begin{matrix}xy+1=x^2-y\\2\left(xy+1\right)=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy+1=x^2-y\\xy=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0;y=-1\\y=0;x^2=1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa