Những câu hỏi liên quan
NT
Xem chi tiết
NC
19 tháng 2 2021 lúc 16:46

Với n=0 \(\Rightarrow\) phương trình có 2 nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

Với n \(\ne0\)

Để phương trình có nghiệm duy nhất \(\Leftrightarrow\dfrac{n}{2}\ne\dfrac{2}{n}\Rightarrow n^2\ne4\Rightarrow n\ne\pm2\)

Vậy hệ phương trình có nghiệm duy nhất \(\forall n\ne\pm2\)

Bình luận (1)
PO
Xem chi tiết
NL
19 tháng 9 2021 lúc 18:02

Thực hiện lần lượt BĐT cô-si 3 số cho từng bộ 3 vế trái, ví dụ:

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\sqrt[3]{\dfrac{1}{a^3b^3c^3}}=\dfrac{3}{abc}\)

Làm tương tự, sau đó cộng vế và quy đồng vế phải là sẽ được BĐT cần chứng minh

Bình luận (0)
PO
Xem chi tiết
XO
5 tháng 4 2022 lúc 18:20

Với p = 2 => 8p2  +1 = 33 (loại)

Với p = 3 => 8p2 + 1 = 73 (tm)

Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\)

Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1 

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)

Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1 

= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)

Vậy p = 3 thì 8p2 + 1 \(\in P\)

Bình luận (1)
NL
5 tháng 4 2022 lúc 18:20

- Với \(p=2\) ko thỏa mãn

- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)

- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3

\(\Rightarrow8p^2+1\) là hợp số (ktm)

Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu

Bình luận (1)
NH
Xem chi tiết
MG
26 tháng 9 2021 lúc 9:46

CÁc số tròn chục nhỏ hơn 90 là :

10 ; 20 ; 30 ; 40 ; 50 ; 60 ; 70 ; 80

Tổng của các số tròn chục nhỏ hơn 90 là :

10 + 20 + ... + 80 = ( 80 + 10 ) x 8 : 2

= 90 x 8 : 2 = 720 : 2 = 360

Bình luận (0)
 Khách vãng lai đã xóa
PO
Xem chi tiết
NL
5 tháng 4 2022 lúc 17:22

Nếu p;q;r đều lẻ hoặc có đúng 1 số trong 3 số là lẻ \(\Rightarrow p^2+q^2+r^2\) lẻ, trong khi 5054 chẵn (ktm)

\(\Rightarrow\) Cả p;q;r đều chẵn (loại do \(2^2+2^2+2^2< 5054\)) hoặc có đúng 1 số trong 3 số là chẵn

Do vai trò 3 số như nhau, ko mất tính tổng quát, giả sử r chẵn \(\Rightarrow r=2\)

\(\Rightarrow p^2+q^2=5050\)

Nếu p; q đều chia hết cho 3 \(\Rightarrow p=q=3\Rightarrow ktm\)

Nếu p;q đều ko chia hết cho 3 \(\Rightarrow p^2\) và \(q^2\) đều chia 3 dư 1

\(\Rightarrow p^2+q^2\) chia 3 dư 2 trong khi \(5050\) chia 3 dư 1 (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q chia hết cho 3, ko mất tính tổng quát, giả sử là p \(\Rightarrow p=3\)

\(\Rightarrow q^2=5050-9=5041\Rightarrow q=71\) là SNT (thỏa mãn)

Vậy bộ 3 số nguyên tố thỏa mãn là \(\left(2;3;71\right)\) và các hoán vị

Bình luận (1)
XO
5 tháng 4 2022 lúc 17:46

Vì tổng của p2 + q2 + r2 \(⋮2\)

=> \(\left[{}\begin{matrix}p⋮2\\q⋮2\\r⋮2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=2\\q=2\\r=2\end{matrix}\right.\)

Giả sử r = 2 => p2 + q2 = 5050 ; p;q lẻ 

=> Chữ số tận cùng p2 chỉ có thể là 9;1

=> Chư số tận cùng p là 1;3;7;9

mà p2 + q2 = 5050 => q2 \(< 5050\) ; p2 < 5050

<=> q < 72 (1) ; p < 72 (2) 

Lại có p2 + q2 = 5050

<=> 2pq = 5050 - (p - q)2 < 5050

<=> pq \(< 2525\) (3)

Từ (1) ; (3) => p >  35 (4)

Từ (2) ; (4) => 35 < p < 72

<=> p \(\in\left\{37;41;43;47;53;59;61;67;71\right\}\)

Thử từng giá trị p => tìm được p = 71 thỏa mán 

thay vào pt gốc được q = 3 (tm)

Vậy các cặp (p;q;r) thỏa là (71;3;2) và các hoán vị 

 

 

Bình luận (0)
HP
5 tháng 4 2022 lúc 17:51

Giả sử p<q<r.

Số 2 là số nguyên tố chẵn duy nhất.

Số lẻ có dạng 2k+1 (k\(\in\)N), bình phương của số lẻ là (2k+1)2=4k2+4k+1 là một số lẻ.

Mà p2+q2+r2 là một số chẵn (=5054), suy ra p=2.

q2+r2=5050 \(\Rightarrow\) q2<2525 \(\Rightarrow\) 3\(\le\)q<50.

Với q=3 \(\Rightarrow\) r=71 (nhận).

Vậy ba số nguyên tố cần tìm là 2, 3 và 71.

Bình luận (0)
PO
Xem chi tiết
PO
22 tháng 2 2022 lúc 20:13

Em xin phép nhờ  quý thầy cô và các bạn giúp đỡ với ạ!

 

Bình luận (0)
H24
Xem chi tiết
GD

Rèn luyện tính kiên trì (Học 5 phút là bấm điện thoại) => Cất điện thoại nơi xa tầm nhìn, và tắt mọi âm báo

Bình luận (0)
PO
Xem chi tiết
NL
6 tháng 3 2022 lúc 23:18

Ta có:

\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\dfrac{1}{2}.2xy\left(x^2+y^2\right)=xy\left(x^2+y^2\right)\)

Áp dụng:

\(P\le\dfrac{a}{a+bc\left(b^2+c^2\right)}+\dfrac{b}{b+ca\left(c^2+a^2\right)}+\dfrac{c}{c+ab\left(a^2+b^2\right)}\)

\(P\le\dfrac{a^2}{a^2+abc\left(b^2+c^2\right)}+\dfrac{b^2}{b^2+abc\left(c^2+a^2\right)}+\dfrac{c^2}{c^2+abc\left(a^2+b^2\right)}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
PO
Xem chi tiết
NL
6 tháng 3 2022 lúc 21:56

\(ab+bc+ca=abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Đặt vế trái của BĐT cần chứng minh là P

Ta có:

\(\dfrac{1}{a+2b+3c}=\dfrac{1}{a+b+b+c+c+c}\le\dfrac{1}{6^2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+2b+3c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\right)\)

Tương tự:

\(\dfrac{1}{b+2c+3a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\right)\) ; \(\dfrac{1}{c+2a+3b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\right)\)

Cộng vế:

\(P\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)