§1. Bất đẳng thức

PO

 Cho các số thực dương  \(a;b;c\)  thỏa mãn  \(a.b.c=1\).  Chứng minh rằng :

\(\dfrac{a}{a+b^4+c^4}+\dfrac{b}{b+c^4+a^4}+\dfrac{c}{c+a^4+b^4}\le1\)

 P/s:  Em xin phép nhờ quý thầy cô giáo và các bạn hỗ trợ giúp đỡ với ạ!
Em cám ơn nhiều ạ!

NL
6 tháng 3 2022 lúc 23:18

Ta có:

\(x^4+y^4\ge\dfrac{1}{2}\left(x^2+y^2\right)^2=\dfrac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge\dfrac{1}{2}.2xy\left(x^2+y^2\right)=xy\left(x^2+y^2\right)\)

Áp dụng:

\(P\le\dfrac{a}{a+bc\left(b^2+c^2\right)}+\dfrac{b}{b+ca\left(c^2+a^2\right)}+\dfrac{c}{c+ab\left(a^2+b^2\right)}\)

\(P\le\dfrac{a^2}{a^2+abc\left(b^2+c^2\right)}+\dfrac{b^2}{b^2+abc\left(c^2+a^2\right)}+\dfrac{c^2}{c^2+abc\left(a^2+b^2\right)}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)

Các câu hỏi tương tự
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết