giải pt
\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
`(201-x)/99+(203-x)/97+(205-x)/95+3=0`
`<=>(201-x)/99+1+(203-x)/97+1+(205-x)/95+1=0`
`<=>(300-x)/99+(300-x)/97+(300-x)/95=0`
`<=>(300-x)(1/99+1/97+1/95)=0`
`<=>300-x=0`
`<=>x=300`
Vậy `x=300`
Vì 205-x/95+3=0
=>205-x/95=0-3=-3
=>205-x=-3*95=-285
=>x=205-(-285)=490
Vậy x=490
\(\dfrac{201-x}{99}\)+\(\dfrac{203-x}{97}\)+\(\dfrac{205-x}{95}\)+3=0
\(\Leftrightarrow\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)
=>300-x=0
=>x=300
<=> 300-x/99+300-x/97+300-x/95=0
<=>(300-x).(1/99+1/97+1/95)=0
<=>300-x=0
<=>x=300
\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
giải các phương Trình sau
a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)
c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)
\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)
\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
Vì \(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\ne0\) nên \(x+100=0\Leftrightarrow x=-100\)
b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)
\(\Rightarrow\dfrac{x+1}{1998}+1+\dfrac{x+2}{1997}+1=\dfrac{x+3}{1996}+1+\dfrac{x+4}{1995}+1\)
\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}=\dfrac{x+1999}{1996}+\dfrac{x+1999}{1995}\)
\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}-\dfrac{x+1999}{1996}-\dfrac{x+1999}{1995}=0\)
\(\Rightarrow\left(x+1999\right)\left(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\right)=0\)
Vì \(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\ne0\) nên \(x+1999=0\Leftrightarrow x=-1999\)
c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
\(\Rightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
\(\Rightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
\(\Rightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\ne0\) nên \(300-x=0\Leftrightarrow x=300\)
Giải các phương trình sau :
a) \(\dfrac{201-x}{99}\) + \(\dfrac{203-x}{97}\) = \(\dfrac{205-x}{95}\) + 3 = 0
b) \(\dfrac{2-x}{2002}\) - 1 = \(\dfrac{1-x}{2003}\) - \(\dfrac{x}{2004}\)
a)\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
<=>\(\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)
<=>\(\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}=\dfrac{205-x+95}{95}=0\)
<=> \(\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}=0\)
<=> \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
<=> 300 - x = 0
<=> x = 300
b) \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
<=> \(\dfrac{2-x}{2002}+1=\left(\dfrac{1-x}{2003}+1\right)+\left(\dfrac{x}{2004}+1\right)\){Cộng cả hai vế của phương trình với 2}
<=> \(\dfrac{2-x+2002}{2002}=\dfrac{1-x+2003}{2003}+\dfrac{-x+2004}{2004}\)
<=> \(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)
<=> \(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
<=> \(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
<=> 2004 - x = 0
<=> x = 2004.
b) \(\dfrac{2-x}{2002}+\dfrac{x}{2004}-1=\dfrac{1-x}{2003}\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1+\dfrac{x}{2004}-1=\dfrac{1-x}{2003}+1\)( cộng 2 vế cho 1)
\(\Leftrightarrow\dfrac{2-x+2002}{2002}+\dfrac{x-2004}{2004}=\dfrac{1-x+2003}{2003}\)
\(\Leftrightarrow\dfrac{2004-x}{2002}+\dfrac{x-2004}{2004}=\dfrac{2004-x}{2003}\)
\(\Leftrightarrow-\dfrac{x-2004}{2002}+\dfrac{x-2004}{2004}+\dfrac{x-2004}{2003}=0\)
\(\Leftrightarrow\left(x-2004\right)\left(\dfrac{-1}{2002}+\dfrac{1}{2004}+\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x=2004\) do \(\left(\dfrac{-1}{2002}+\dfrac{1}{2004}+\dfrac{1}{2003}\ne0\right)\)
giải pt:
\(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)
(201-x)/99 +(203- x)/97+ (205 - x)/95 + 3 = 0
201-x/99 + 205-x/95 + 203-x/97 + 3 = 0
Giải:
Ta có: \(\frac{201-x}{99}+\frac{205-x}{95}+\frac{203-x}{97}+3=0\)
\(\Leftrightarrow\frac{201-x}{99}+1+\frac{205-x}{95}+1+\frac{203-x}{97}+1=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{95}+\frac{300-x}{97}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{95}+\frac{1}{97}\right)=0\)
\(\Leftrightarrow300-x=0\) (Vì \(\frac{1}{99}+\frac{1}{95}+\frac{1}{97}\ne0\))
\(\Leftrightarrow x=300\)
Vậy phương trình có nghiệm là \(x=300.\)
Chúc bạn học tốt@@