Những câu hỏi liên quan
DC
Xem chi tiết
MY
16 tháng 12 2021 lúc 23:23

\(1.\left(x\ne\pm1\right)\Rightarrow pt\Leftrightarrow\left(x-m\right)\left(x-1\right)=\left(x+1\right)\left(x-2\right)\)

\(\Leftrightarrow x^2-x\left(m+1\right)+m=x^2-x-2\)

\(\Leftrightarrow-x\left(m+1\right)+m=-x-2\)

\(\Leftrightarrow x=\dfrac{m+2}{m}\left(m\ne0\right)\)

\(pt-có-ngo-duy-nhất\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+2}{m}\ne1\\\dfrac{m+2}{m}\ne-1\end{matrix}\right.\)\(\Leftrightarrow m\ne-1\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-1\end{matrix}\right.\)

\(2.\left\{{}\begin{matrix}x^2+8y^2=12\left(1\right)\\x^3+2xy^2+12y=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2y\left(3\right)\\x^2-xy+4y^2=\left(x-\dfrac{y}{2}\right)^2+\dfrac{15}{4}y^2=0\left(4\right)\end{matrix}\right.\)

\(\left(3\right)\left(1\right)\Rightarrow4y^2+8y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

với \(x=y=0\) không là nghiệm của hệ pt

với \(x=y\ne0\Rightarrow\left(4\right)>0\Rightarrow\left(4\right)-vô-nghiệm\)

\(\Rightarrow\left(x;y\right)=\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

Bình luận (0)
NM
16 tháng 12 2021 lúc 23:23

\(1,\Leftrightarrow\left(x-m\right)\left(x-1\right)=x^2-x-2\\ \Leftrightarrow x^2-x-mx+m-x^2+x+2=0\\ \Leftrightarrow mx=m+2\)

PT có nghiệm duy nhất \(\Leftrightarrow m\ne0\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}x^2y+8y^3=12y\\x^3+2xy^2+12y=0\end{matrix}\right.\)

Thế \(PT\left(1\right)\rightarrow PT\left(2\right)\Leftrightarrow x^3+2xy^2+x^2y+8y^3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-2xy+4y^2\right)+xy\left(x+2y\right)=0\\ \Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left(x-\dfrac{1}{2}y\right)^2+\dfrac{15}{4}y^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left\{{}\begin{matrix}x-\dfrac{1}{2}y=0\\y^2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\end{matrix}\right.\)

Thay \(x=y=0\Leftrightarrow0+0=12\left(loại\right)\)

Thay \(x=-2y\Leftrightarrow4y^2+8y^2=12y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

Bình luận (0)
KR
Xem chi tiết
NL
27 tháng 3 2021 lúc 0:17

a.

Thay số 12 từ pt trên xuống dưới:

\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\left(ktm\right)\end{matrix}\right.\)

Thế vào pt đầu:

\(\left(-2y\right)^2+8y^2=12\Leftrightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

Bình luận (0)
NL
27 tháng 3 2021 lúc 0:18

b.

Thế số 1 từ pt trên xuống dưới:

\(x^7+y^7=\left(x^4+y^4\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow x^4y^3+x^3y^4=0\)

\(\Leftrightarrow x^3y^3\left(x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-x\end{matrix}\right.\)

Thế vào pt đầu: \(\Rightarrow\left[{}\begin{matrix}y^3=1\\x^3=1\\x^3-x^3=1\left(vô-nghiệm\right)\end{matrix}\right.\)

Vậy nghiệm của hệ là: \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)

Bình luận (0)
AR
Xem chi tiết
AH
30 tháng 12 2019 lúc 16:55

Bạn tham khảo lời giải tại đây:

Câu hỏi của Nguyễn Thu Ngà - Toán lớp 9 | Học trực tuyến

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TN
Xem chi tiết
NL
21 tháng 1 2021 lúc 11:54

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:

\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)

\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
VN
28 tháng 3 2019 lúc 20:51

\(\left\{{}\begin{matrix}x^3+2xy^2+12y=0\\8y^2+x^2=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2xy^2+\left(8y^2+x^2\right)y=0\\8y^2+x^2=0\end{matrix}\right.\)

Thấy x = 0 vô lý .

\(\Rightarrow y=tx\left(t\ne0\right)\)

\(\Rightarrow x^3\left(8t^3+2t^2+t+1=0\right)\)

\(\Rightarrow t=-\frac{1}{2}\)

\(\Rightarrow...\)

#Kaito#

Bình luận (0)
TN
Xem chi tiết
NL
19 tháng 1 2021 lúc 12:58

\(x^3-7x^2y+16xy^2-12y^3=0\)

\(\Leftrightarrow\left(x-3y\right)\left(x-2y\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=3y\end{matrix}\right.\)

Thế xuống pt dưới giải đơn giản

Bình luận (0)
CP
Xem chi tiết
NL
18 tháng 3 2021 lúc 10:40

Từ pt đầu: \(x^3=8y^3\Leftrightarrow x^3=\left(2y\right)^3\Leftrightarrow x=2y\)

Thế xuống pt dưới:

\(x^4-20x^2+96=0\Rightarrow\left[{}\begin{matrix}x^2=12\\x^2=8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\sqrt{3}\Rightarrow y=\sqrt{3}\\x=-2\sqrt{3}\Rightarrow y=-\sqrt{3}\\x=2\sqrt{2}\Rightarrow y=\sqrt{2}\\x=-2\sqrt{2}\Rightarrow y=-\sqrt{2}\end{matrix}\right.\)

Bình luận (0)