Giải hệ phương trình
x(y+z)=-1
y(x+z)=-9
z(x+y)=-4
Làm giúp em ạ em cảm ơn
Giải hệ phương trình
x - 1/y = 1
y - 1/z = 1
z - 1/x = 1
Cho x,y,z>0 và \(2x+4y+3z^2=68\).Tìm MinP=\(x^3+y^3+z^3\)
:< giúp em với ạ, với lại có thể cho eim xin phương pháp để giải mấy bài kiểu vậy với ạ, em cảm ơn
Đây là 1 bài toán không giải được (người ra đề đã chọn 1 con số ngẫu nhiên dẫn tới kết quả phương trình điểm rơi không thể giải)
Dự đoán điểm rơi tại \(x=a;y=b;z=c\)
\(2\left(x^3+a^3+a^3\right)\ge6a^2x\)
\(2\left(y^3+b^3+b^3\right)\ge6b^2y\)
\(z^3+z^3+c^3\ge3cz^2\)
Cộng vế:
\(2P+\left(4a^3+4b^3+c^3\right)\ge3\left(2a^2x+2b^2y+cz^2\right)\)
Ta cần tìm a, b, c sao cho:
\(\left\{{}\begin{matrix}2a+4b+3c^2=68\\\dfrac{2a^2}{2}=\dfrac{2b^2}{4}=\dfrac{c}{3}\\\end{matrix}\right.\) \(\Leftrightarrow2a+4.a\sqrt{2}+3.\left(3a^2\right)^2=68\)
\(\Leftrightarrow27a^4+\left(4\sqrt{2}+2\right)a-68=0\)
Đây là 1 pt bậc 4 không thể giải cho nên đây là 1 BĐT không thể giải.
Thông thường khi cho số liệu thì người ra đề phải tính trước các hệ số để ra 1 pt có thể giải chứ ko random kiểu ngớ ngẩn thế này
Giải hệ phương trình sau:
x - y = -1
y - z = -1
z + x = 8
Không có dấu nên mình ko điền vào đk, thông cảm nha. giải chi tiết giúp mình. Mình sẽ tick cho. Cảm ơn nhiều!!
x - y = -1
y - z = -1
z + x = 8
<=>
x=-1+y
z=1+y
1+y-1+y=8
<=>
x=-1+4=3
z=1+4=5
y=4
Vậy (3;4;5) là nghiệm của hệ phương trình
thử làm cách nay nha
x - y = -1 y = x + 1 y=x+1 y=x+1 y=x+1 y=4
y - z = -1 => x + 1 - z = -1 => x+1-(8-x)=-1 => x+1-8+x=-1 => 2x=6 => x=3
z + x = 8 z = 8 - x z=8-x z=8-x z=8-x z=5
vì ko có dấu móc nên mình ghi vầy bạn tự làm dấu móc nha
Cho x,y,z > 0, xyz = 1
CMR (x+y)(y+z)(x+z) >= 2(1+x+y+z)
Em xin hướng giải thồi ạ em cảm ơn.
Nhân bung ra, rút gọn rồi đưa về bất đẳng thức: \(\sum\dfrac{xy}{z}\ge\sum2x\), đến đây dùng BDT Cauchy là xong rồi em.
Tìm x, y, z biếtt :(x)/(y)=(3)/(4); (y)/(z)=(5)/(7) và 2*x+3*y-z=186
Mn giúp em vs ạ, em đang cần gấp. Em cảm ơn nhiều :3
x/y=3/4
=>x/3=y/4
=>x/15=y/20
y/z=5/7
=>y/5=z/7
=>y/20=z/28
=>x/15=y/20=z/28=(2x+3y-z)/(2*15+3*20-28)=186/62=3
=>x=45; y=60; z=84
Cho x > y > z > 0. Tìm giá trị nhỏ nhất của biểu thức:
P = \(x+12+\dfrac{81}{z\left(x-y\right)\left(y-z\right)}\)
Giải hộ em với ạ!!!
Em cảm ơn
\(P=\left(x-y\right)+\left(y-z\right)+z+\dfrac{81}{z\left(x-y\right)\left(y-z\right)}+12\)
\(P\ge4\sqrt[4]{\left(x-y\right)\left(y-z\right).z.\dfrac{81}{z\left(x-y\right)\left(y-z\right)}}+12=24\)
\(P_{min}=24\) khi \(\left(x;y;z\right)=\left(9;6;3\right)\)
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,
Dạ mọi người giúp em này với ạ! Dạ em cảm ơn ạ. Giải hệ phương trình
a) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{x+z}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:
\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)
\(\Rightarrow yz=5xy\Rightarrow z=5x\)
Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)
\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)
Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)
\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)
b/ Do các vế trái đều ko âm nên x;y;z không âm
- Nhận thấy nếu 1 biến bằng 0 thì 2 biến còn lại cũng bằng 0 nên \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
- Với \(x;y;z>0\) ta có:
\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2\sqrt{x^2.1}}=x\Rightarrow y\le x\)
Tương tự: \(z=\frac{2y^2}{1+y^2}\le y\) ; \(x=\frac{2z^2}{1+z^2}\le z\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Thay vào pt đầu:
\(\frac{2x^2}{1+x^2}=x\Leftrightarrow\frac{2x}{1+x^2}=1\Leftrightarrow2x=x^2+1\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=y=z=1\)
Vậy: \(\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)
Các bác giải giùm em bài này được không ạ???Em xin cảm ơn trước!!!
\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+y+2+x+y-3+1}{x+y+z+x+y+z}\)
=\(\frac{\left(x+y+z\right)+\left(x+y+y1+2-3\right)}{\left(x+y+z\right)+\left(x+y+z\right)}=\frac{\left(x+y+z\right)+\left(x+y+y+1\right)}{\left(x+y+z\right)+\left(x+y+z\right)}\)
=>x+y+y+1=x+y+z
=>y+1=z
Vậy đáp số cần tìm là x,y,z khác 0
x tùy ý
y tùy ý
z=y+1
Bài toán: Cho yc-bz/x = za-xc/y=xb-ya/z biết ( x,y,z khác 0)
Chúng minh a/x=b/y=c/z
Anh chị giúp em giải bài toán này cái ạ.Em cảm ơn nhiểu ạ!
Ta phải giả sử x,y,z khác 0
gt: (yc-bz)/x=(za-xc)/y =>
(c/z-b/y)/zx^2=(a/x-c/z)/zy^2 hay:
(c/z-b/y)/x^2=(a/x-c/z)/y^2 (*)
mặt khác từ gt:
(yc-bz)/x=(xb-ya)/z =>
(c/z-b/y)/yx^2=(b/y-a/x)/yz^2 hay:
(c/z-b/y)/x^2=(b/y-a/x)/z^2 (**)
*nếu: c/z-b/y>0
<=>c/z>b/y
Theo (*) ta có:
a/x-c/z>0
<=>a/x>c/z
=>a/x>c/z>b/y
=>b/y-a/x<0 vô lí vì từ (**) :
b/y-a/x>0
*nếu: c/z-b/y<0
<=>c/z<b/y
Theo (*) ta có:
a/x-c/z<0
=>a/x<c/z
=>a/x<c/z<b/y.
=>b/y-a/x>0. vô lí vì theo (**) => b/y-a/x<0
Vậy ta phải có:
c/z-b/y=0
Thay vào (*) ta có:
a/x=b/y=c/z.
Ta có:
yc-bz/x = za-xc/y=xb-ya/z=k
=> xyc-xbz/x^2=zya-xyc/y^2=zxb-zya/z^2=k
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
xyc-xbz/x=zya-xyc/y=zxb-zya/z=xyc-xbz+zya-xyc+zxb-zya/x^2+y^2+z^2 ( x^2+y^2+z^2 >0, vì x,y,z khác 0)
= [(xyc-xyc)+(-xbz+zxb)+(zya-zya)]/x^2+y^2+z^2=0/x^2+y^2+z^2=k
=>k=0
=> yc-bz/x=0 => yc-bz=0 => yc=bz => c/z=b/y (1)
za-xc/y=0 => za-xc=0 => za=xc => a/x=c/z (2)
Từ (1) và (2) => a/x =b/y=c/z
Nhìn cách giải thế thôi chứ giải ra giấy ngắn lắm bạn nhé !