Chương III - Hệ hai phương trình bậc nhất hai ẩn

CT

Dạ mọi người giúp em này với ạ! Dạ em cảm ơn ạ. Giải hệ phương trình

a) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{x+z}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{matrix}\right.\)

NL
4 tháng 8 2020 lúc 13:53

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:

\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)

\(\Rightarrow yz=5xy\Rightarrow z=5x\)

Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)

\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)

Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)

\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)

Bình luận (0)
NL
4 tháng 8 2020 lúc 13:57

b/ Do các vế trái đều ko âm nên x;y;z không âm

- Nhận thấy nếu 1 biến bằng 0 thì 2 biến còn lại cũng bằng 0 nên \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

- Với \(x;y;z>0\) ta có:

\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2\sqrt{x^2.1}}=x\Rightarrow y\le x\)

Tương tự: \(z=\frac{2y^2}{1+y^2}\le y\) ; \(x=\frac{2z^2}{1+z^2}\le z\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Thay vào pt đầu:

\(\frac{2x^2}{1+x^2}=x\Leftrightarrow\frac{2x}{1+x^2}=1\Leftrightarrow2x=x^2+1\)

\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=y=z=1\)

Vậy: \(\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
TP
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết