Những câu hỏi liên quan
TT
Xem chi tiết
NL
6 tháng 9 2021 lúc 17:29

\(y'=3x^2-6mx+6\left(m^2-2\right)=3\left(x^2-2mx+2m^2-4\right)\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>2\) ta có \(y'\ge0\)

\(\Delta'=m^2-\left(2m^2-4\right)=-m^2+4\)

TH1: \(\Delta'\le0\Leftrightarrow-m^2+4\le0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

 TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-m^2+4>0\\\left(x_1-2\right)\left(x_2-2\right)\le0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2< m< 2\\2m^2-4m\le0\\m< 2\end{matrix}\right.\) \(\Rightarrow0\le m< 2\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m\le-2\\m\ge0\end{matrix}\right.\)

Bình luận (0)
NG
Xem chi tiết
NH
19 tháng 4 2016 lúc 14:11

Ta có \(y'=-\left(m-1\right)x^2+2\left(m+2\right)+3m\) \(\Rightarrow\) Hàm đồng biến trên khoảng \(\left(-\infty;-2\right)\Leftrightarrow y'\ge0,x\in\left(-\infty;-2\right)\)(*)

Vì y'(x) liên tục tại x = -2 nên (*) \(\Leftrightarrow y'\ge0;\)

và mọi x thuộc (-\(-\infty;2\) ] (*)

\(\Leftrightarrow-\left(m-1\right)x^2+2\left(m+2\right)x+3m\ge0\), mọi x thuộc (-\(-\infty;2\) ]

\(\Leftrightarrow m\left(-x^2+2x+3\right)\ge-x^2-4x\), mọi x thuộc (-\(-\infty;2\) ]\(\Leftrightarrow m\le g\left(x\right)\), mọi x thuộc (-\(-\infty;2\) ] (Trong đó \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\))

\(\Leftrightarrow m\le Min_{\left(-\infty;-2\right)}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\) trên đoạn  (-\(-\infty;2\) ]

\(\Rightarrow g'\left(x\right)=\frac{-6\left(x^2+x+2\right)}{\left(-x^2+2x+3\right)^2}=\frac{-6\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}{\left(-x^2+2x+3\right)^2}<0\),mọi x thuộc (-\(-\infty;2\) ]

\(\Rightarrow g\left(x\right)\) là hàm số nghịch biến trên  (-\(-\infty;2\) ]

\(\Rightarrow Min_{\left(-\infty;-2\right)}g\left(x\right)=g\left(-2\right)=-\frac{4}{5}\)

Vậy \(m\le-\frac{4}{5}\) thì hàm số đồng biến trên khoảng \(\left(-\infty;-2\right)\)

Bình luận (0)
LV
Xem chi tiết
NL
20 tháng 6 2021 lúc 10:12

\(y'=3x^2-6mx+3\left(3m-4\right)=3\left[x^2-2mx+3m-4\right]\)

Xét \(f\left(x\right)=x^2-2mx+3m-4\)

\(\Delta'=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\) ;\(\forall m\)

a. Để hàm số đồng biến trên khoảng đã cho

\(\Leftrightarrow x^2-2mx+3m-4\ge0\) ; \(\forall x\le1\)

\(\Leftrightarrow1\le x_1< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m-4-2m+1\ge0\\2m>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge3\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge3\)

Bình luận (0)
NL
20 tháng 6 2021 lúc 10:13

b.

Để hàm đồng biến trên khoảng đã cho

\(\Leftrightarrow x^2-2mx+3m-4\ge0\) ; \(\forall x\ge2\)

\(\Leftrightarrow x_1< x_2\le2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m-4-4m+4\ge0\\2m< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m< 2\end{matrix}\right.\) \(\Rightarrow m\le0\)

Bình luận (0)
HM
Xem chi tiết
NT
14 tháng 8 2021 lúc 22:13

a: Để hàm số đồng biến trên R thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số, ta được:

m+3=5

hay m=2

Bình luận (0)
HM
Xem chi tiết
NT
14 tháng 8 2021 lúc 22:04

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

Bình luận (0)
HM
Xem chi tiết
NT
14 tháng 8 2021 lúc 22:04

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

Bình luận (0)
MT
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
DT
29 tháng 9 2016 lúc 10:43

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

Bình luận (0)