`y'=3x^2+4mx=0<=>[(x=0),(x=-4/3m):}` `(m ne 0)`
`=>[(y=-m),(y=32/27 m^3-m):}`
`=>A(0;-m),B(-4/3m;32/27 m^3-m)`
Để `\triangle OAB` vuong tại `O`
`=>\vec{OA}.\vec{OB}=0`
`<=>(0;-m).(-4/3m;32/27 m^3 -m)=0`
`<=>0.(-4/3m)-m(32/27 m^3-m)=0`
`<=>m^2(32/27m^2 -1)=0`
`<=>[(m=0(L)),(m=+-[3\sqrt{6}]/8 (t//m)):}`
Vậy `m=+-[3\sqrt{6}]/8`.
\(y=x^3-3mx^2+\left(m-1\right)x+2\)
\(y'=3x^2-6mx+m-1\)
\(y''=6x-6=6\left(x-1\right)\)
Để hàm số trên đạt cực trị tại \(x_o=2\) khi và chỉ khi
\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)>0\end{matrix}\right.\) \(\)
\(\Leftrightarrow\left\{{}\begin{matrix}12-12m+m-1=0\\6\left(2-1\right)=6>0\left(luôn.đúng\right)\end{matrix}\right.\)
\(\Leftrightarrow11m=11\)
\(\Leftrightarrow m=1\)
Vậy với \(m=1\) thỏa yêu cầu đề bài.
Tìm các điểm cực trị của hàm số sau
y= f(x)= \(\dfrac{2-3x}{x+2}\)
\(y=f\left(x\right)=\dfrac{2-3x}{x+2}\left(đk:x\ne-2\right)\)
\(y'=\dfrac{-8}{\left(x+2\right)^2}< 0\forall x\ne-2\)
=> Hàm số f(x) không có cực trị
cho hàm số y=\(\dfrac{x^2+mx+1}{x+m}\)với m là tham số. với giá trị nào của tham số m thì hàm số đạt cực đại tại x=2?
a. m=-3 b.m=3 c.m=-1 d.m=0
\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)
\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)
Chọn a
Tìm m để hàm số y = \(\dfrac{-1}{3}x^{3} -2x^{2}+mx+3 \) có hai điểm cực trị A và B thỏa mãn
a) Đường thằng AB có hệ số góc k=2
b) Đường thẳng AB song song với đường thằng x+y-1=0
c) Đường thẳng AB vuông góc với đường thằng 3x+2y-3=0
Ở một công ty người ta dùng máy thăm dò nước ngầm. Kinh nghiệm cho biết cứ 10 địa điểm bị nghi vấn thì có 7 vị trí là có nước ngầm. Ở vị trí có nước ngầm máy báo đúng với xác suất 0,85. Ở vị trí không có nước ngầm máy báo sai với xác suất 0,1. Một vị trí được máy phân tích. Hãy tính xác suất
(a) Máy báo vị trí này có nước ngầm.
(b) Máy báo đúng.
Gọi sự kiện A là vị trí này có nước ngầm, sự kiện B là máy báo đúng.
Ta có:
P(A) = 7/10 (vì cứ 10 địa điểm bị nghi vấn thì có 7 vị trí là có nước ngầm)
P(B|A) = 0.85 (vị trí có nước ngầm máy báo đúng với xác suất 0.85)
P(~B|~A) = 0.9 (vị trí không có nước ngầm máy báo sai với xác suất 0.1)
`(a)` Ta cần tính xác suất P(A|B), tức là vị trí này có nước ngầm khi máy báo đúng.
Theo công thức Bayes, ta có:
P(A|B) = P(B|A) * P(A) / P(B)
Trong đó:
P(B) = P(B|A) * P(A) + P(B|~A) * P(~A) (theo định lý xác suất toàn phần)
P(~A) = 1 - P(A) (vì chỉ có hai khả năng: có nước ngầm hoặc không có nước ngầm)
Thay giá trị vào ta được:
P(B) = P(B|A) * P(A) + P(B|~A) * P(~A) = 0.85 * 7/10 + 0.9 * 3/10 = 0.865
P(A|B) = P(B|A) * P(A) / P(B) = 0.85 * 7/10 / 0.865 ≈ 0.692
Vậy xác suất vị trí này có nước ngầm khi máy báo đúng là khoảng 69.2%.
`(b)` Ta cần tính xác suất P(B), tức là máy báo đúng.
Theo công thức Bayes, ta có:
P(B) = P(B|A) * P(A) + P(B|~A) * P(~A)
Thay giá trị vào ta được:
P(B) = P(B|A) * P(A) + P(B|~A) * P(~A) = 0.85 * 7/10 + 0.1 * 3/10 = 0.655
Vậy xác suất máy báo đúng là khoảng 65.5%.
Câu 6. Tìm các giá trị thực của tham số \(m\) để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3.
A. \(m=1,m=5\)
B. \(m=5\)
C. \(m=1\)
D. \(m=-1\)
Ta có:
\(y'=x^2-2mx+m^2-4\)
\(y''=2x-2m,\forall x\in R\)
Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:
\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)
=> B.
=-1+2-3+4-...+(-1)^(n)*n
Yêu cầu đề bài là gì vậy bạn?
Cho hàm số f(x) có đạo hàm f '(x) có đồ thị như hình vẽ bên. Hàm số g(x) = f(x) −\(\dfrac{x^3}{3}+x^2-x+2\) đạt cực đại tại điểm nào?