Viết phương trình tiếp tuyến của đồ thị hàm số y = - x 4 - x 2 + 6 , biết tiếp tuyến có hệ số góc k=6
A. y = 6x + 6
B. y = -6x + 1
C. y = -6x + 10
D. y = 6x + 10
Cho hàm số: \(y=\dfrac{x-1}{x+1}\) Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với d: \(y=\dfrac{x-2}{2}\)
Ta có : \(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{\left(x+1\right)-\left(x-1\right)}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}\)
Giả sử d' là tiếp tuyến của đths đã cho . Do d' // d : y = \(\dfrac{x-2}{2}\)
\(\Rightarrow d'\) có HSG = 1/2 \(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=\dfrac{1}{2}\Leftrightarrow4=\left(x+1\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với x = 1 . PTTT d' : \(y=\dfrac{1}{2}\left(x-1\right)+0=\dfrac{1}{2}x-\dfrac{1}{2}\)
Với x = -3 . PTTT d' : \(y=\dfrac{1}{2}\left(x+3\right)+2=\dfrac{1}{2}x+\dfrac{7}{2}\)
Cho hàm số: \(y=\dfrac{x-1}{x+1}\) Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với d: \(y=\dfrac{x-2}{2}\)
y'=(x-1)'(x+1)-(x-1)(x+1)'/(x+1)^2=(x+1-x+1)/(x+1)^2=2/(x+1)^2
(d1)//(d)
=>(d1): y=1/2x+b
=>y'=1/2
=>(x+1)^2=4
=>x=1 hoặc x=-3
Khi x=1 thì f(1)=0
y-f(1)=f'(1)(x-1)
=>y-0=1/2(x-1)=1/2x-1/2
Khi x=-3 thì f(-3)=(-4)/(-2)=2
y-f(-3)=f'(-3)(x+3)
=>y-2=1/2(x+3)
=>y=1/2x+3/2+2=1/2x+7/2
Cho hàm số: y = – x 4 – x 2 + 6
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng: y = x/6 –1
a) Học sinh tự làm
b) Ta có: y′ = –4 x 3 – 2x
Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:
–4 x 3 – 2x = –6
⇔ 2 x 3 + x – 3 = 0
⇔ 2( x 3 – 1) + (x – 1) = 0
⇔ (x – 1)(2 x 2 + 2x + 3) = 0
⇔ x = 1(2 x 2 + 2x + 3 > 0, ∀x)
Ta có: y(1) = 4
Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10
Cho hàm số: y = – x 4 – x 2 + 6. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng: y = x/6 –1
Ta có: y′ = –4 x 3 – 2x
Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:
–4 x 3 – 2x = –6
⇔ 2 x 3 + x – 3 = 0
⇔ 2( x 3 – 1) + (x – 1) = 0
⇔ (x – 1)(2 x 2 + 2x + 3) = 0
⇔ x = 1(2 x 2 + 2x + 3 > 0, ∀ x)
Ta có: y(1) = 4
Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10
Cho hàm số y = x - 1 x + 1 . Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với d : y = x - 2 2
d: có hệ số góc k = 1/2 ⇒ Tiếp tuyến có hệ số góc k = 1/2.
- Gọi ( x 0 , y 0 ) là toạ độ của tiếp điểm.
- Ta có:
Đề bài
Cho hàm số \(y = - 2{x^2} + x\) có đồ thị (C).
a) Xác định hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; - 6)
a, Hệ số góc của tiếp tuyến của đồ thị là:
\(y'\left(2\right)=-4\cdot2+1=-7\)
b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:
\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)
a) Tính đạo hàm của hàm số \(y=\sqrt{sinx+cosx}\)
b) Hãy viết phương trình tiếp tuyến với đồ thị (C) của hàm số \(y=\dfrac{x+3}{x-1}\) biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{4}x+5\)
a.
\(y'=\dfrac{\left(sinx+cosx\right)'}{2\sqrt{sinx+cosx}}=\dfrac{cosx-sinx}{2\sqrt{sinx+cosx}}\)
b.
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
Tiếp tuyến vuông góc với \(y=\dfrac{1}{4}x+5\) nên có hệ số góc thỏa mãn \(k.\left(\dfrac{1}{4}\right)=-1\Rightarrow k=-4\)
\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-3\\x=2\Rightarrow y=5\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4x-3\\y=-4\left(x-2\right)+5\end{matrix}\right.\)
Cho hàm số y = − x 3 + 2 x 2 + 2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng y = x + 2.
A. y = x + 68 27 .
B. y = x + 2.
C. y = x + 50 27 .
D. y = x − 1 3 .
Đáp án C.
Ta có:
y ' = − 3 x 2 + 4 x ; y ' = 1 ⇔ − 3 x 2 + 4 x = 1 ⇔ x = 1 x = 1 3 .
Khi x = 1, tiếp tuyến có phương trình y = x + 2 trùng với đường thẳng y = x + 2.
Khi x = , tiếp tuyến có phương trình y = x + 50 27 .
Cho hàm số :
\(y=-x^4-x^2+6\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{6}x-1\)
Cho hàm số \(y=\dfrac{x}{x-1}\). Viết phương trình tiếp tuyến của đồ thị hàm số, biết rằng khoẳng cách từ điểm \(B\left(1;1\right)\) đến tiếp tuyến có giá trị lớn nhất.
A. \(y=x-4\)
B. \(y=x+3\)
C. \(y=-x+5\)
D. \(-x+4\)
Ta có : \(y=\dfrac{x}{x-1}=1+\dfrac{1}{x-1}\Rightarrow y'=\dfrac{-1}{\left(x-1\right)^2}\)
Giả sử M(xo ; yo) là tiếp điểm của tiếp tuyến d với đths trên \(\). Ta có :
PT d : \(y=\dfrac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_{0-1}}=\dfrac{-x}{\left(x_0-1\right)^2}+\dfrac{x_0^2}{\left(x_0-1\right)^2}\)
K/C từ B(1;1) đến d : d(B;d) = \(\left|\dfrac{\dfrac{1}{\left(x_0-1\right)^2}+1-\dfrac{x_0^2}{\left(x_0-1\right)^2}}{\sqrt{\dfrac{1}{\left(x_0-1\right)^4}+1}}\right|\)
= \(\left|\dfrac{2\left(1-x_0\right)}{\left(x_0-1\right)^2}\right|:\dfrac{\sqrt{\left(x_0-1\right)^4+1}}{\left(x_0-1\right)^2}=\dfrac{2\left|1-x_0\right|}{\sqrt{\left(1-x_0\right)^4+1}}\) \(\le\dfrac{2\left|1-x_0\right|}{\sqrt{2\left(1-x_0\right)^2}}=\sqrt{2}\)
" = " \(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
Suy ra : y = -x hoặc y = -x + 4
\(y'=\dfrac{-1}{\left(x-1\right)^2}\)
Giả sử \(x_0\) là hoành độ tiếp điểm
Phương trình tiếp tuyến d:
\(y=-\dfrac{1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_0-1}\)
\(\Rightarrow x+\left(x_0-1\right)^2y-x_0^2=0\)
\(d\left(B;d\right)=\dfrac{\left|1+\left(x_0-1\right)^2-x_0^2\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2\left|x_0-1\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(x_0-1\right)^2}+\left(x_0-1\right)^2}}\le\dfrac{2}{\sqrt{2}}\)
Dấu "=" xảy ra khi:
\(\dfrac{1}{\left(x_0-1\right)^2}=\left(x_0-1\right)^2\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-x+4\end{matrix}\right.\)